1
|
Zhan YP, Chen BS. Drug Target Identification and Drug Repurposing in Psoriasis through Systems Biology Approach, DNN-Based DTI Model and Genome-Wide Microarray Data. Int J Mol Sci 2023; 24:10033. [PMID: 37373186 DOI: 10.3390/ijms241210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Psoriasis is a chronic skin disease that affects millions of people worldwide. In 2014, psoriasis was recognized by the World Health Organization (WHO) as a serious non-communicable disease. In this study, a systems biology approach was used to investigate the underlying pathogenic mechanism of psoriasis and identify the potential drug targets for therapeutic treatment. The study involved the construction of a candidate genome-wide genetic and epigenetic network (GWGEN) through big data mining, followed by the identification of real GWGENs of psoriatic and non-psoriatic using system identification and system order detection methods. Core GWGENs were extracted from real GWGENs using the Principal Network Projection (PNP) method, and the corresponding core signaling pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Comparing core signaling pathways of psoriasis and non-psoriasis and their downstream cellular dysfunctions, STAT3, CEBPB, NF-κB, and FOXO1 are identified as significant biomarkers of pathogenic mechanism and considered as drug targets for the therapeutic treatment of psoriasis. Then, a deep neural network (DNN)-based drug-target interaction (DTI) model was trained by the DTI dataset to predict candidate molecular drugs. By considering adequate regulatory ability, toxicity, and sensitivity as drug design specifications, Naringin, Butein, and Betulinic acid were selected from the candidate molecular drugs and combined into potential multi-molecule drugs for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yu-Ping Zhan
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
2
|
Targeting epiregulin in the treatment-damaged tumor microenvironment restrains therapeutic resistance. Oncogene 2022; 41:4941-4959. [PMID: 36202915 DOI: 10.1038/s41388-022-02476-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023]
Abstract
The tumor microenvironment (TME) represents a milieu enabling cancer cells to develop malignant properties, while concerted interactions between cancer and stromal cells frequently shape an "activated/reprogramed" niche to accelerate pathological progression. Here we report that a soluble factor epiregulin (EREG) is produced by senescent stromal cells, which non-cell-autonomously develop the senescence-associated secretory phenotype (SASP) upon DNA damage. Genotoxicity triggers EREG expression by engaging NF-κB and C/EBP, a process supported by elevated chromatin accessibility and increased histone acetylation. Stromal EREG reprograms the expression profile of recipient neoplastic cells in a paracrine manner, causing upregulation of MARCHF4, a membrane-bound E3 ubiquitin ligase involved in malignant progression, specifically drug resistance. A combinational strategy that empowers EREG-specific targeting in treatment-damaged TME significantly promotes cancer therapeutic efficacy in preclinical trials, achieving response indices superior to those of solely targeting cancer cells. In clinical oncology, EREG is expressed in tumor stroma and handily measurable in circulating blood of cancer patients post-chemotherapy. This study establishes EREG as both a targetable SASP factor and a new noninvasive biomarker of treatment-damaged TME, thus disclosing its substantial value in translational medicine.
Collapse
|
3
|
Yamamoto M, Nagasawa Y, Fujimori K. Glycyrrhizic acid suppresses early stage of adipogenesis through repression of MEK/ERK-mediated C/EBPβ and C/EBPδ expression in 3T3-L1 cells. Chem Biol Interact 2021; 346:109595. [PMID: 34302803 DOI: 10.1016/j.cbi.2021.109595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Glycyrrhizic acid (GA), a major constituent of the root of licorice (Glycyrrhiza glabra), and has various biological activities, including anti-obesity property. However, the molecular mechanism of anti-adipogenic effect of GA is still unclear. In this study, we investigated the anti-adipogenic effects of GA in mouse adipocytic 3T3-L1 cells and elucidated its underlying molecular mechanism. GA decreased the intracellular triglyceride level. The expression levels of the adipogenic and lipogenic genes were lowered by treatment with GA in a concertation-dependent manner. In contrast, GA did not affect the lipolytic gene expression and the released glycerol level. GA suppressed the early stage of adipogenesis when it was added for 0-3 h after initiation of adipogenesis. Moreover, GA reduced the mRNA levels of CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ, both of which activate the early stage of adipogenesis. Furthermore, GA decreased phosphorylation of extracellular signal-regulated kinase [ERK: p44/42 mitogen-activated protein kinase (MAPK)] in the early stage of adipogenesis. In addition, a MAPK kinase (MEK) inhibitor, PD98059 reduced the C/EBPβ and C/EBPδ gene expression. These results indicate that GA suppressed the early stage of adipogenesis through repressing the MEK/ERK-mediated C/EBPβ and C/EBPδ expression in 3T3-L1 cells. Thus, GA has an anti-adipogenic ability and a possible agent for treatment of obesity.
Collapse
Affiliation(s)
- Masayuki Yamamoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yasuna Nagasawa
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
4
|
Nanduri R, Kalra R, Bhagyaraj E, Chacko AP, Ahuja N, Tiwari D, Kumar S, Jain M, Parkesh R, Gupta P. AutophagySMDB: a curated database of small molecules that modulate protein targets regulating autophagy. Autophagy 2019; 15:1280-1295. [PMID: 30669929 DOI: 10.1080/15548627.2019.1571717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Macroautophagy/autophagy is a complex self-degradative mechanism responsible for clearance of non functional organelles and proteins. A range of factors influences the autophagic process, and disruptions in autophagy-related mechanisms lead to disease states, and further exacerbation of disease. Despite in-depth research into autophagy and its role in pathophysiological processes, the resources available to use it for therapeutic purposes are currently lacking. Herein we report the Autophagy Small Molecule Database (AutophagySMDB; http://www.autophagysmdb.org/ ) of small molecules and their cognate protein targets that modulate autophagy. Presently, AutophagySMDB enlists ~10,000 small molecules which regulate 71 target proteins. All entries are comprised of information such as EC50 (half maximal effective concentration), IC50 (half maximal inhibitory concentration), Kd (dissociation constant) and Ki (inhibition constant), IUPAC name, canonical SMILE, structure, molecular weight, QSAR (quantitative structure activity relationship) properties such as hydrogen donor and acceptor count, aromatic rings and XlogP. AutophagySMDB is an exhaustive, cross-platform, manually curated database, where either the cognate targets for small molecule or small molecules for a target can be searched. This database is provided with different search options including text search, advanced search and structure search. Various computational tools such as tree tool, cataloging tools, and clustering tools have also been implemented for advanced analysis. Data and the tools provided in this database helps to identify common or unique scaffolds for designing novel drugs or to improve the existing ones for autophagy small molecule therapeutics. The approach to multitarget drug discovery by identifying common scaffolds has been illustrated with experimental validation. Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy related; AutophagySMDB: autophagy small molecule database; BCL2: BCL2, apoptosis regulator; BECN1: beclin 1; CAPN: calpain; MTOR: mechanistic target of rapamycin kinase; PPARG: peroxisome proliferator activated receptor gamma; SMILES: simplified molecular input line entry system; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Rashi Kalra
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Ella Bhagyaraj
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Anuja P Chacko
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Nancy Ahuja
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Drishti Tiwari
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sumit Kumar
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Monika Jain
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Raman Parkesh
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Pawan Gupta
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
5
|
Chen F, Long Q, Fu D, Zhu D, Ji Y, Han L, Zhang B, Xu Q, Liu B, Li Y, Wu S, Yang C, Qian M, Xu J, Liu S, Cao L, Chin YE, Lam EWF, Coppé JP, Sun Y. Targeting SPINK1 in the damaged tumour microenvironment alleviates therapeutic resistance. Nat Commun 2018; 9:4315. [PMID: 30333494 PMCID: PMC6193001 DOI: 10.1038/s41467-018-06860-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy and radiation not only trigger cancer cell apoptosis but also damage stromal cells in the tumour microenvironment (TME), inducing a senescence-associated secretory phenotype (SASP) characterized by chronic secretion of diverse soluble factors. Here we report serine protease inhibitor Kazal type I (SPINK1), a SASP factor produced in human stromal cells after genotoxic treatment. DNA damage causes SPINK1 expression by engaging NF-κB and C/EBP, while paracrine SPINK1 promotes cancer cell aggressiveness particularly chemoresistance. Strikingly, SPINK1 reprograms the expression profile of cancer cells, causing prominent epithelial-endothelial transition (EET), a phenotypic switch mediated by EGFR signaling but hitherto rarely reported for a SASP factor. In vivo, SPINK1 is expressed in the stroma of solid tumours and is routinely detectable in peripheral blood of cancer patients after chemotherapy. Our study substantiates SPINK1 as both a targetable SASP factor and a novel noninvasive biomarker of therapeutically damaged TME for disease control and clinical surveillance.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Ji
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liu Han
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Boyi Zhang
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bingjie Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shanshan Wu
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Yang
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Qian
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110122, China
| | - Y Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94115, USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine, VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Ayyar K, Reddy KVR. Transcription factor CCAAT/enhancer-binding protein-β upregulates microRNA, let-7f-1 in human endocervical cells. Am J Reprod Immunol 2017; 78. [PMID: 28921745 DOI: 10.1111/aji.12759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/15/2017] [Indexed: 11/27/2022] Open
Abstract
PROBLEM In endocervical epithelial cells (End1/E6E7), miRNA let-7f plays an important role in the control of innate immunity. The underlying molecular mechanism for let-7f regulation in these cells remains largely unclear. METHODS OF STUDY let-7f was knocked down in End1/E6E7 cells using siRNA, and differential gene expression was analyzed by microarray. Differentially expressed genes were validated by qPCR and Western blot. Expression of let-7f was studied by qPCR after inhibition of C/EBPβ with betulinic acid (BA) and pCMVβ plasmid and after overexpression of C/EBPβ with pCMVβ+ plasmid. ChIP assay was performed to confirm binding of C/EBPβ to let-7f promoter. Levels of Lin28A/B were checked by qPCR after similar treatment. RESULTS let-7f knockdown (KD) affects the expression of many transcription factors (eg, C/EBPβ) which are important regulators of immune responses. We observed let-7f-1 promoter to contain 6 C/EBPβ binding sites. KD of C/EBPβ led to decreased let-7f expression while overexpression of C/EBPβ increased its expression. Treatment of End1/E6E7 cells with TLR-3 ligand, poly(I:C) increased binding of C/EBPβ at binding sites 3, 5, and 6. Expression of Lin28A/B also changed upon inhibition and overexpression of C/EBPβ. Its expression is opposite to that of let-7f in End1/E6E7 cells. CONCLUSION let-7f-1 is a direct target of transcription factor, C/EBPβ in End1/E6E7 cells.
Collapse
Affiliation(s)
- Kanchana Ayyar
- Division of Molecular Immunology and Microbiology (MIM), National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Kudumula Venkata Rami Reddy
- Division of Molecular Immunology and Microbiology (MIM), National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| |
Collapse
|
7
|
Brusotti G, Montanari R, Capelli D, Cattaneo G, Laghezza A, Tortorella P, Loiodice F, Peiretti F, Bonardo B, Paiardini A, Calleri E, Pochetti G. Betulinic acid is a PPARγ antagonist that improves glucose uptake, promotes osteogenesis and inhibits adipogenesis. Sci Rep 2017; 7:5777. [PMID: 28720829 PMCID: PMC5516003 DOI: 10.1038/s41598-017-05666-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/01/2017] [Indexed: 01/16/2023] Open
Abstract
PPAR antagonists are ligands that bind their receptor with high affinity without transactivation activity. Recently, they have been demonstrated to maintain insulin-sensitizing and antidiabetic properties, and they serve as an alternative treatment for metabolic diseases. In this work, an affinity-based bioassay was found to be effective for selecting PPAR ligands from the dried extract of an African plant (Diospyros bipindensis). Among the ligands, we identified betulinic acid (BA), a compound already known for its anti-inflammatory, anti-tumour and antidiabetic properties, as a PPARγ and PPARα antagonist. Cell differentiation assays showed that BA inhibits adipogenesis and promotes osteogenesis; either down-regulates or does not affect the expression of a series of adipogenic markers; and up-regulates the expression of osteogenic markers. Moreover, BA increases basal glucose uptake in 3T3-L1 adipocytes. The crystal structure of the complex of BA with PPARγ sheds light, at the molecular level, on the mechanism by which BA antagonizes PPARγ, and indicates a unique binding mode of this antagonist type. The results of this study show that the natural compound BA could be an interesting and safe candidate for the treatment of type 2 diabetes and bone diseases.
Collapse
Affiliation(s)
- Gloria Brusotti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria Km. 29, 300, 00015, Monterotondo Stazione, Roma, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria Km. 29, 300, 00015, Monterotondo Stazione, Roma, Italy
| | - Giulia Cattaneo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E.Orabona 4, 70126, Bari, Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E.Orabona 4, 70126, Bari, Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E.Orabona 4, 70126, Bari, Italy
| | - Franck Peiretti
- Inserm UMR 1062, Faculté de Médecine Timone, Aix-Marseille University, 27 bd Jean Moulin, 13385, Marseille, France
| | - Bernadette Bonardo
- Inserm UMR 1062, Faculté de Médecine Timone, Aix-Marseille University, 27 bd Jean Moulin, 13385, Marseille, France
| | - Alessandro Paiardini
- Department of Biology and Biotechnology, Università "La Sapienza" di Roma, via dei Sardi 70, 00185, Roma, Italy
| | - Enrica Calleri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Via Taramelli 12, 27100, Pavia, Italy.
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria Km. 29, 300, 00015, Monterotondo Stazione, Roma, Italy.
| |
Collapse
|
8
|
Muto M, Baghdadi M, Maekawa R, Wada H, Seino KI. Myeloid molecular characteristics of human γδ T cells support their acquisition of tumor antigen-presenting capacity. Cancer Immunol Immunother 2015; 64:941-9. [PMID: 25904200 PMCID: PMC11028926 DOI: 10.1007/s00262-015-1700-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Human T cells expressing γδ T cell receptor have a potential to show antigen-presenting cell-like phenotype and function upon their activation. However, the mechanisms that underlie the alterations in human γδ T cells remain largely unclear. In this study, we have investigated the molecular characteristics of human γδ T cells related to their acquisition of antigen-presenting capacity in comparison with activated αβ T cells. We found that activated γδ but not αβ T cells upregulated cell surface expression of a scavenger receptor, CD36, which seemed to be mediated by signaling through mitogen-activated protein kinase and/or NF-κB pathways. Confocal microscopical analysis revealed that activated γδ T cells can phagocytose protein antigens. Activated γδ T cells could induce tumor antigen-specific CD8(+) T cells using both apoptotic and live tumor cells as antigen resources. Furthermore, we detected that C/EBPα, a critical transcription factor for the development of myeloid-lineage cells, is expressed much higher in γδ T cells than in αβ T cells. These results unveiled the molecular mechanisms for the elicitation of antigen-presenting functions in γδ T cells and would also help designing new approaches for γδ T cell-mediated human cancer immunotherapy.
Collapse
Affiliation(s)
- Masato Muto
- Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Sapporo, Hokkaido 060-0815 Japan
- Medinet Medical Institute, MEDINET Co., Ltd., Tokyo, Japan
| | - Muhammad Baghdadi
- Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Sapporo, Hokkaido 060-0815 Japan
| | - Ryuji Maekawa
- Medinet Medical Institute, MEDINET Co., Ltd., Tokyo, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Sapporo, Hokkaido 060-0815 Japan
| | - Ken-ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Sapporo, Hokkaido 060-0815 Japan
| |
Collapse
|
9
|
Silvian L, Enyedy I, Kumaravel G. Inhibitors of protein-protein interactions: new methodologies to tackle this challenge. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e509-e515. [PMID: 24451642 DOI: 10.1016/j.ddtec.2012.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Several advances in the fields of crystallography, molecular modeling, biophysical assays and chemistry are converging to making protein-protein interaction targets more amenable to drug design. These include steps towards improving crystallization of protein-protein complexes, identifying the clusters of residues that constitute putative small molecule binding 'hot spots', generating new methods for detecting the binding of small molecules to target proteins, and generating custom libraries via diversity oriented synthesis to enable the identification of natural-product-like hits.
Collapse
|