1
|
Sõrmus T, Lavogina D, Teearu A, Enkvist E, Uri A, Viht K. Construction of Covalent Bisubstrate Inhibitor of Protein Kinase Reacting with Cysteine Residue at Substrate-Binding Site. J Med Chem 2022; 65:10975-10991. [PMID: 35960538 DOI: 10.1021/acs.jmedchem.2c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent clinical success with targeted covalent inhibitors points to new possibilities for development of protein kinase (PK)-targeted drugs by exploiting reactive cysteine residues in and around the ATP-binding site. However, more than 300 human PKs lack cysteine residues in the ATP-binding site. Here, we report the first covalent bisubstrate PK inhibitor whose electrophilic warhead reaches outside the ATP-binding site and reacts with a distant cysteine residue. A series of covalent inhibitors and their reversible counterparts were synthesized and characterized. The most potent reversible inhibitor possessed picomolar affinity and its cysteine-reactive counterpart revealed high value of kinact/KI ratio (6.2 × 107 M-1 s-1) for the reaction with the catalytic subunit of cAMP-dependent PK (PKAc). Under optimized conditions, fluorescent dye-labeled covalent inhibitors demonstrated PKA-selectivity in the cell lysate and reacted with several proteins inside live cells, including PKAc. The disclosed compounds serve as leads for targeting PKs possessing an analogously positioned cysteine residue.
Collapse
Affiliation(s)
- Tanel Sõrmus
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Darja Lavogina
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Anu Teearu
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| |
Collapse
|
2
|
Quantitative conformational profiling of kinase inhibitors reveals origins of selectivity for Aurora kinase activation states. Proc Natl Acad Sci U S A 2018; 115:E11894-E11903. [PMID: 30518564 PMCID: PMC6304972 DOI: 10.1073/pnas.1811158115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many drugs trigger changes to the structure of their target receptor upon binding. These conformational effects are thought to be an essential part of molecular recognition but have proven challenging to quantify. Using a high-throughput method for tracking structural changes in a protein kinase in solution, we discovered that many clinically important cancer drugs trigger substantial structural changes to their target protein kinase Aurora A, and that these effects systematically account for the ability of the drugs to differentiate between different biochemical forms of Aurora A. The results provide insight into mechanisms of drug selectivity and suggest strategies for tailoring inhibitors to target certain cancers in which Aurora A has been dysregulated in different ways. Protein kinases undergo large-scale structural changes that tightly regulate function and control recognition by small-molecule inhibitors. Methods for quantifying the conformational effects of inhibitors and linking them to an understanding of selectivity patterns have long been elusive. We have developed an ultrafast time-resolved fluorescence methodology that tracks structural movements of the kinase activation loop in solution with angstrom-level precision, and can resolve multiple structural states and quantify conformational shifts between states. Profiling a panel of clinically relevant Aurora kinase inhibitors against the mitotic kinase Aurora A revealed a wide range of conformational preferences, with all inhibitors promoting either the active DFG-in state or the inactive DFG-out state, but to widely differing extents. Remarkably, these conformational preferences explain broad patterns of inhibitor selectivity across different activation states of Aurora A, with DFG-out inhibitors preferentially binding Aurora A activated by phosphorylation on the activation loop, which dynamically samples the DFG-out state, and DFG-in inhibitors binding preferentially to Aurora A constrained in the DFG-in state by its allosteric activator Tpx2. The results suggest that many inhibitors currently in clinical development may be capable of differentiating between Aurora A signaling pathways implicated in normal mitotic control and in melanoma, neuroblastoma, and prostate cancer. The technology is applicable to a wide range of clinically important kinases and could provide a wealth of valuable structure–activity information for the development of inhibitors that exploit differences in conformational dynamics to achieve enhanced selectivity.
Collapse
|
4
|
Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques. Sci Rep 2017; 7:45514. [PMID: 28358124 PMCID: PMC5371984 DOI: 10.1038/srep45514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M−1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.
Collapse
|
5
|
Kestav K, Viht K, Konovalov A, Enkvist E, Uri A, Lavogina D. Slowly on, Slowly off: Bisubstrate-Analogue Conjugates of 5-Iodotubercidin and Histone H3 Peptide Targeting Protein Kinase Haspin. Chembiochem 2017; 18:790-798. [DOI: 10.1002/cbic.201600697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Katrin Kestav
- Institute of Chemistry; University of Tartu; Ravila 14A 50411 Tartu Estonia
| | - Kaido Viht
- Institute of Chemistry; University of Tartu; Ravila 14A 50411 Tartu Estonia
| | - Anton Konovalov
- Institute of Chemistry; University of Tartu; Ravila 14A 50411 Tartu Estonia
| | - Erki Enkvist
- Institute of Chemistry; University of Tartu; Ravila 14A 50411 Tartu Estonia
| | - Asko Uri
- Institute of Chemistry; University of Tartu; Ravila 14A 50411 Tartu Estonia
| | - Darja Lavogina
- Institute of Chemistry; University of Tartu; Ravila 14A 50411 Tartu Estonia
| |
Collapse
|
6
|
Abstract
Mutations in cancer cells frequently result in cell cycle alterations that lead to unrestricted growth compared to normal cells. Considering this phenomenon, many drugs have been developed to inhibit different cell-cycle phases. Mitotic phase targeting disturbs mitosis in tumor cells, triggers the spindle assembly checkpoint and frequently results in cell death. The first anti-mitotics to enter clinical trials aimed to target tubulin. Although these drugs improved the treatment of certain cancers, and many anti-microtubule compounds are already approved for clinical use, severe adverse events such as neuropathies were observed. Since then, efforts have been focused on the development of drugs that also target kinases, motor proteins and multi-protein complexes involved in mitosis. In this review, we summarize the major proteins involved in the mitotic phase that can also be targeted for cancer treatment. Finally, we address the activity of anti-mitotic drugs tested in clinical trials in recent years.
Collapse
|
7
|
Kumar M, Lowery RG. A High-Throughput Method for Measuring Drug Residence Time Using the Transcreener ADP Assay. SLAS DISCOVERY 2017; 22:915-922. [PMID: 28346107 DOI: 10.1177/2472555217695080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Analysis of drug-target residence times during drug development can result in improved efficacy, increased therapeutic window, and reduced side effects. Residence time can be estimated as the reciprocal of the dissociation rate ( koff) of an inhibitor from its target. The traditional methods for measuring koff require synthesis of labeled ligands or low-throughput label-free methods. To provide an alternative that is better suited to an automated high-throughput screening (HTS) environment, we adapted a classic "jump dilution" catalytic assay method for determination of koff values for kinase inhibitor drugs. We used the Transcreener ADP2 Kinase assay as a universal, homogenous method to monitor the recovery of kinase activity as the drugs dissociated from preformed inhibitor-kinase complexes. We measured residence times for several drugs that bind the epidermal growth factor receptor (EGFR), ABL1, and Aurora kinases and found that the rank ordering of inhibitor koff values correlated with literature values determined using ligand binding assays. Moreover, very similar results were obtained using the Transcreener assay with fluorescence polarization (FP), fluorescence intensity (FI), and time-resolved Förster resonance energy transfer (TR-FRET) detection modes. This HTS-compatible, generic assay method should facilitate the use of residence time as a parameter for compound prioritization and optimization early in kinase drug discovery programs.
Collapse
|
8
|
de Groot CO, Hsia JE, Anzola JV, Motamedi A, Yoon M, Wong YL, Jenkins D, Lee HJ, Martinez MB, Davis RL, Gahman TC, Desai A, Shiau AK. A Cell Biologist's Field Guide to Aurora Kinase Inhibitors. Front Oncol 2015; 5:285. [PMID: 26732741 PMCID: PMC4685510 DOI: 10.3389/fonc.2015.00285] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023] Open
Abstract
Aurora kinases are essential for cell division and are frequently misregulated in human cancers. Based on their potential as cancer therapeutics, a plethora of small molecule Aurora kinase inhibitors have been developed, with a subset having been adopted as tools in cell biology. Here, we fill a gap in the characterization of Aurora kinase inhibitors by using biochemical and cell-based assays to systematically profile a panel of 10 commercially available compounds with reported selectivity for Aurora A (MLN8054, MLN8237, MK-5108, MK-8745, Genentech Aurora Inhibitor 1), Aurora B (Hesperadin, ZM447439, AZD1152-HQPA, GSK1070916), or Aurora A/B (VX-680). We quantify the in vitro effect of each inhibitor on the activity of Aurora A alone, as well as Aurora A and Aurora B bound to fragments of their activators, TPX2 and INCENP, respectively. We also report kinome profiling results for a subset of these compounds to highlight potential off-target effects. In a cellular context, we demonstrate that immunofluorescence-based detection of LATS2 and histone H3 phospho-epitopes provides a facile and reliable means to assess potency and specificity of Aurora A versus Aurora B inhibition, and that G2 duration measured in a live imaging assay is a specific readout of Aurora A activity. Our analysis also highlights variation between HeLa, U2OS, and hTERT-RPE1 cells that impacts selective Aurora A inhibition. For Aurora B, all four tested compounds exhibit excellent selectivity and do not significantly inhibit Aurora A at effective doses. For Aurora A, MK-5108 and MK-8745 are significantly more selective than the commonly used inhibitors MLN8054 and MLN8237. A crystal structure of an Aurora A/MK-5108 complex that we determined suggests the chemical basis for this higher specificity. Taken together, our quantitative biochemical and cell-based analyses indicate that AZD1152-HQPA and MK-8745 are the best current tools for selectively inhibiting Aurora B and Aurora A, respectively. However, MK-8745 is not nearly as ideal as AZD1152-HQPA in that it requires high concentrations to achieve full inhibition in a cellular context, indicating a need for more potent Aurora A-selective inhibitors. We conclude with a set of “good practice” guidelines for the use of Aurora inhibitors in cell biology experiments.
Collapse
Affiliation(s)
- Christian O de Groot
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Judy E Hsia
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - John V Anzola
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Amir Motamedi
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Michelle Yoon
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Yao Liang Wong
- Laboratory of Chromosome Biology, Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - David Jenkins
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Hyun J Lee
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Mallory B Martinez
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Robert L Davis
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Arshad Desai
- Laboratory of Chromosome Biology, Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| |
Collapse
|