1
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Liu Y, Tian X, Zhang F, Zhang WB. Probing the Topological Effects on Stability Enhancement and Therapeutic Performance of Protein Bioconjugates: Tadpole, Macrocycle versus Figure-of-Eight. Adv Healthc Mater 2024:e2400466. [PMID: 39091049 DOI: 10.1002/adhm.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Chemical topology provides a unique dimension for making therapeutic protein bioconjugates with native structure and intact function, yet the effects of topology remain elusive. Herein, the design, synthesis, and characterization of therapeutic protein bioconjugates in three topologies (i.e., tadpole, macrocycle, and figure-of-eight), are reported. The interferon α2b (IFN) and albumin binding domain (ABD) are selected as the model proteins for bioconjugation and proof-of-concept. The biosynthesis of these topological isoforms is accomplished via direct expression in cells using SpyTag-SpyCatcher chemistry and/or split-intein-mediated ligation for topology diversification. The corresponding topologies are proven with combined techniques of LC-MS, SDS-PAGE, and controlled proteolytic digestion. While the properties of these topological isoforms are similar in most cases, the figure-of-eight-shaped bioconjugate, f8-IFN-ABD, exhibits the best thermal stability and anti-aggregation properties along with prolonged half-life and enhanced tumor retention relative to the tadpole-shaped control, tadp-IFN-ABD, and the macrocyclic control, c-IFN-ABD, showcasing considerable topological effects. The work expands the topological diversity of proteins and demonstrates the potential advantages of leveraging chemical topology for functional benefits beyond multi-function integration in protein therapeutics.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibao Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
3
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
4
|
Xiao Q, Jones ZB, Hatfield SC, Ashton DS, Dalley NA, Dyer CD, Evangelista JL, Price JL. Structural guidelines for stabilization of α-helical coiled coils via PEG stapling. RSC Chem Biol 2022; 3:1096-1104. [PMID: 36128502 PMCID: PMC9428657 DOI: 10.1039/d1cb00237f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Macrocyclization or stapling is one of the most well-known and generally applicable strategies for enhancing peptide/protein conformational stability and target binding affinity. However, there are limited structure- or sequence-based guidelines for the incorporation of optimal interhelical staples within coiled coils: the location and length of an interhelical staple is either arbitrarily chosen or requires significant optimization. Here we explore the impact of interhelical PEG stapling on the conformational stability and proteolytic resistance of a model disulfide-bound heterodimeric coiled coil. We demonstrate that (1) interhelical PEG staples are more stabilizing when placed farther from an existing disulfide crosslink; (2) e/g′ staples are more stabilizing than f/b′ or b/c′ staples; (3) PEG staples between different positions have different optimal staple lengths; (4) PEG stapling tolerates variation in the structure of the PEG linker and in the mode of conjugation; and (5) the guidelines developed here enable the rational design of a stabilized PEG-stapled HER-2 affibody with enhanced conformational stability and proteolytic resistance. Here we identify key criteria for designing PEG-stapled coiled coils with increased conformational and proteolytic stability.![]()
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Zachary B. Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Samantha C. Hatfield
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Dallin S. Ashton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Nicholas A. Dalley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Cody D. Dyer
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Judah L. Evangelista
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Joshua L. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
5
|
Xiao Q, Ashton DS, Jones ZB, Thompson KP, Price JL. Long-range PEG Stapling: Macrocyclization for Increased Protein Conformational Stability and Resistance to Proteolysis. RSC Chem Biol 2020; 1:273-280. [PMID: 33796855 PMCID: PMC8009319 DOI: 10.1039/d0cb00075b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously showed that long-range stapling of two Asn-linked O-allyl PEG oligomers via olefin metathesis substantially increases the conformational stability of the WW domain through an entropic effect. The impact of stapling was more favorable when the staple connected positions that were far apart in primary sequence but close in the folded tertiary structure. Here we validate these criteria by identifying new stabilizing PEG-stapling sites within the WW domain and the SH3 domain, both β-sheet proteins. We find that stapling via olefin metathesis vs. the copper(i)-catalyzed azide/alkyne cycloaddition (CuAAC) results in similar energetic benefits, suggesting that olefin and triazole staples can be used interchangeably. Proteolysis assays of selected WW variants reveal that the observed staple-based increases in conformational stability lead to enhanced proteolytic resistance. Finally, we find that an intermolecular staple dramatically increases the quaternary structural stability of an α-helical GCN4 coiled-coil heterodimer. Long-range stapling of two Asn-linked PEG oligomers via olefin metathesis substantially increases the conformational stability of the WW and SH3 domain tertiary structures and the GCN4 coiled-coil quaternary structure.![]()
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dallin S Ashton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Zachary B Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Katherine P Thompson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Joshua L Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
6
|
Horne WS, Grossmann TN. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns. Nat Chem 2020; 12:331-337. [PMID: 32029906 DOI: 10.1038/s41557-020-0420-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Proteins have evolved as a variable platform that provides access to molecules with diverse shapes, sizes and functions. These features have inspired chemists for decades to seek artificial mimetics of proteins with improved or novel properties. Such work has focused primarily on small protein fragments, often isolated secondary structures; however, there has lately been a growing interest in the design of artificial molecules that mimic larger, more complex tertiary folds. In this Perspective, we define these agents as 'proteomimetics' and discuss the recent advances in the field. Proteomimetics can be divided into three categories: protein domains with side-chain functionality that alters the native linear-chain topology; protein domains in which the chemical composition of the polypeptide backbone has been partially altered; and protein-like folded architectures that are composed entirely of non-natural monomer units. We give an overview of these proteomimetic approaches and outline remaining challenges facing the field.
Collapse
Affiliation(s)
- W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Ghosh S, Alam S, Rathore AS, Khare SK. Stability of Therapeutic Enzymes: Challenges and Recent Advances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:131-150. [DOI: 10.1007/978-981-13-7709-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Nilsson A, Lindgren J, Eriksson Karlström A. Intramolecular Thioether Crosslinking to Increase the Proteolytic Stability of Affibody Molecules. Chembiochem 2017; 18:2056-2062. [PMID: 28836374 DOI: 10.1002/cbic.201700350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/12/2022]
Abstract
Protein therapeutics suffer from low oral bioavailability, mainly due to poor membrane permeability and digestion by gastrointestinal proteases. To improve proteolytic stability, intramolecular thioether crosslinks were introduced into a three-helix affibody molecule binding the human epidermal growth factor receptor (EGFR). Solid-phase peptide synthesis was used to produce an unmodified control protein domain and three different crosslinked protein domain variants: one with a thioether crosslink between the N-terminal lysine residue and a cysteine residue in the second loop region (denoted K4), a second with a crosslink between the C-terminal lysine residue and a cysteine residue in the first loop region (denoted K58), and a third with crosslinks in both positions (denoted K4K58). Circular dichroism (CD) and surface-plasmon-resonance-based (SPR-based) biosensor studies of the protein domains showed that the three-helix structure and high-affinity binding to EGFR were preserved in the crosslinked protein domains. In vitro digestion by gastrointestinal proteases demonstrated that the crosslinked protein domains showed increased stability towards pepsin and towards a combination of trypsin and chymotrypsin.
Collapse
Affiliation(s)
- Anders Nilsson
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Joel Lindgren
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Amelie Eriksson Karlström
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| |
Collapse
|
9
|
Fisher AB. Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch Biochem Biophys 2017; 617:68-83. [PMID: 27932289 PMCID: PMC5810417 DOI: 10.1016/j.abb.2016.12.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 6 represents a widely distributed group of peroxiredoxins that contain a single conserved cysteine in the protein monomer (1-cys Prdx). The cys when oxidized to the sulfenic form is reduced with glutathione (GSH) catalyzed by the π isoform of GSH-S-transferase. Three enzymatic activities of the protein have been described:1) peroxidase with H2O2, short chain hydroperoxides, and phospholipid hydroperoxides as substrates; 2) phospholipase A2 (PLA2); and 3) lysophosphatidylcholine acyl transferase (LPCAT). These activities have important physiological roles in antioxidant defense, turnover of cellular phospholipids, and the generation of superoxide anion via initiation of the signaling cascade for activation of NADPH oxidase (type 2). The ability of Prdx6 to reduce peroxidized cell membrane phospholipids (peroxidase activity) and also to replace the oxidized sn-2 fatty acyl group through hydrolysis/reacylation (PLA2 and LPCAT activities) provides a complete system for the repair of peroxidized cell membranes.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine of the Department of Physiology, University of Pennsylvania, 3620 Hamilton Walk, 1 John Morgan Building, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Abstract
This article defines protein stability, emphasizes its importance and surveys the field of protein stabilization, with summary reference to a selection of 2009-2015 publications. One can enhance stability by, in particular, protein engineering strategies and by chemical modification (including conjugation) in solution. General protocols are set out on how to measure a given protein's (1) kinetic thermal stability, and (2) oxidative stability, and (3) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
11
|
Steinhagen M, Gräbner A, Meyer J, Horst AE, Drews A, Holtmann D, Ansorge-Schumacher MB. Bridging the bridge—Stabilization of CalB against H2O2 and its application in epoxidation reactions. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Olszewska A, Pohl R, Brázdová M, Fojta M, Hocek M. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins. Bioconjug Chem 2016; 27:2089-94. [PMID: 27479485 DOI: 10.1021/acs.bioconjchem.6b00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).
Collapse
Affiliation(s)
- Agata Olszewska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic
| | - Marie Brázdová
- Institute of Biophysics, Czech Academy of Sciences , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Czech Academy of Sciences , Kralovopolska 135, 612 65 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University , Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo namesti 2, 166 10 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
13
|
Zhou S, Sorokina EM, Harper S, Li H, Ralat L, Dodia C, Speicher DW, Feinstein SI, Fisher AB. Peroxiredoxin 6 homodimerization and heterodimerization with glutathione S-transferase pi are required for its peroxidase but not phospholipase A2 activity. Free Radic Biol Med 2016; 94:145-56. [PMID: 26891882 PMCID: PMC4844822 DOI: 10.1016/j.freeradbiomed.2016.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
Peroxiredoxin 6 (Prdx6) is a unique 1-Cys member of the peroxiredoxin family with both GSH peroxidase and phospholipase A2 (PLA2) activities. It is highly expressed in the lung where it plays an important role in antioxidant defense and lung surfactant metabolism. Glutathionylation of Prdx6 mediated by its heterodimerization with GSH S-transferase π (πGST) is required for its peroxidatic catalytic cycle. Recombinant human Prdx6 crystallizes as a homodimer and sedimentation equilibrium analysis confirmed that this protein exists as a high affinity dimer in solution. Based on measurement of molecular mass, dimeric Prdx6 that was oxidized to the sulfenic acid formed a sulfenylamide during storage. After examination of the dimer interface in the crystal structure, we postulated that the hydrophobic amino acids L145 and L148 play an important role in homodimerization of Prdx6 as well as in its heterodimerization with πGST. Oxidation of Prdx6 also was required for its heterodimerization. Sedimentation equilibrium analysis and the Duolink proximity ligation assay following mutation of the L145 and L148 residues of Prdx6 to Glu indicated greatly decreased dimerization propensity reflecting the loss of hydrophobic interactions between the protein monomers. Peroxidase activity was markedly reduced by mutation at either of the Leu sites and was essentially abolished by the double mutation, while PLA2 activity was unaffected. Decreased peroxidase activity following mutation of the interfacial leucines presumably is mediated via impaired heterodimerization of Prdx6 with πGST that is required for reduction and re-activation of the oxidized enzyme.
Collapse
Affiliation(s)
- Suiping Zhou
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elena M Sorokina
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sandra Harper
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Haitao Li
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Luis Ralat
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chandra Dodia
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David W Speicher
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Mokrushin AA. Mystixin-7 mini-peptide protects ionotropic glutamatergic mechanisms against oxygen-glucose deprivation in vitro. Neuropeptides 2016; 56:51-7. [PMID: 26526227 DOI: 10.1016/j.npep.2015.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to explore the neuroprotective effects of the mystixin-7 mini-peptide (MTX, a synthetic corticotropin-releasing-factor-like, 7-amino-acid peptide) on an in vitro oxygen glucose deprivation model (OGD, 10min). The study used a technique of on-line monitoring of changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) and N-methyl-d-aspartic acid receptor (NMDAR)-mediated field excitatory postsynaptic potentials (fEPSPs) in the olfactory cortex slices in the OGD model. OGD resulted in an irreversible blockade of both AMPAR and NMDAR activity. Pretreatment of slices by MTX and their subsequent exposure to OGD resulted in decreased activity of these postsynaptic mechanisms (AMPARs, 71%; NMDARs, 68% as compared to baseline), but they were not blocked altogether. The degree protection of activity of both AMPARs and NMDARs had dose-dependent manner, with a maximal effect at 100mg/mL. These protective effects were retained after the removal of MTX from the bathing medium. To evaluate the protective efficacy of MTX on NMDARs, the slices were pretreated by MTX and exposed to OGD and then treated with l-glutamate (1mM). NMDARs' response to application of l-glutamate was minimal at higher concentrations of MTX and maximal at lower concentrations. These findings indicate that the molecules of MTX interact with a certain amount of NMDARs, and thereby protect them from the OGD. Pretreatment of slices with MTX contributed to the protection of network activity against OGD and promoted the development of the learning process in the form of long-term potentiation. To specify the protective effects of MTX, it was denatured by trypsin. The proteolytic cleavage of MTX resulted to a significant decrease in the activity of both AMPARs and NMDARs against OGD as compared with that of the native peptide. Together, these findings provide further insight into the protective potential of the MTX mini-peptide. We believe that the data presented can be the basis for the development of therapeutics MTX-based medications for the treatment of the ischemic stroke.
Collapse
Affiliation(s)
- Anatoly A Mokrushin
- I. P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, nab. Makarova, 6, Saint-Petersburg, Russia.
| |
Collapse
|