1
|
Senuma W, Tsuzuki M, Takemura C, Terazawa Y, Kiba A, Ohnishi K, Kai K, Hikichi Y. The sensor histidine kinase PhcS participates in the regulation of quorum sensing-dependent virulence genes in Ralstonia pseudosolanacearum strain OE1-1. Microbiol Spectr 2025; 13:e0005925. [PMID: 40035541 PMCID: PMC11960443 DOI: 10.1128/spectrum.00059-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Ralstonia pseudosolanacearum strain OE1-1 secretes methyl 3-hydroxymyristate (3-OH MAME) as a quorum-sensing (QS) signal. Strain OE1-1 senses the chemical by the sensor histidine kinase PhcS, leading to the activation of the LysR family transcriptional regulator PhcA. The activated PhcA controls the expression of QS-dependent genes responsible for QS-regulated phenotypes including virulence. The autophosphorylation of the histidine at amino acid position 230 (H230-PhcS) in PhcS following the 3-OH MAME sensing is required for the PhcA activation. The alternative sensor histidine kinase PhcK is involved in the regulation of phcA, which is independent of 3-OH MAME sensing. Furthermore, the H230Q-PhcS substitution of H230-PhcS with glutamine significantly decreases phcA expression. However, how PhcK and PhcS regulate phcA expression remains unclear. To elucidate the mechanisms of the phcA regulation, we generated a phcK mutant with the H205Q-PhcK substitution of autophosphorylated histidine at amino acid position 205 of PhcK with glutamine. A transcriptome analysis using quantitative real-time polymerase chain reaction assay and RNA sequencing showed that the H230Q-PhcS substitution, but not the H205Q-PhcK substitution, significantly decreased the expression level of phcA. The H230Q-PhcS substitution led to significant changes in the expression levels of QS-dependent genes and a loss of virulence, similar to phcA or phcK deletion. It is thus thought that PhcS participates in not only the 3-OH MAME sensing-independently PhcK-mediated regulation of phcA but also the PhcA activation following 3-OH MAME sensing. Both functions of PhcS are significantly influenced by the autophosphorylation of H230-PhcS. IMPORTANCE The soil-borne Ralstonia solanacearum species complex (RSSC) infects more than 300 plant species in over 50 families, including solanaceous plants, causing the devastating wilt disease that substantially decreases agricultural production worldwide. The cell density-dependent gene regulation system, QS, is required for RSSC virulence and involves two signaling pathways for the induction and activation of PhcA, which is the master transcriptional regulator in QS. In the present study, we describe the contribution of sensor histidine kinase PhcS to the PhcA induction, along with the alternative sensor kinase PhcK, independently of the sensing of QS signal methyl 3-hydroxymyristate in a phylotype I strain of RSSC, R. pseudosolanacearum strain OE1-1. This study further expands our knowledge of multiple networks, suggesting that several PhcS-mediated two-component systems are likely necessary for RSSC QS and virulence.
Collapse
Affiliation(s)
- Wakana Senuma
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Chika Takemura
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kenji Kai
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
2
|
Senuma W, Hayashi K, Tsuzuki M, Takemura C, Terazawa Y, Kiba A, Ohnishi K, Kai K, Hikichi Y. Contribution of the Sensor Histidine Kinases PhcS and VsrA to the Quorum Sensing of Ralstonia pseudosolanacearum Strain OE1-1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:688-697. [PMID: 39295141 DOI: 10.1094/mpmi-05-24-0049-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The soilborne Gram-negative phytopathogenic beta-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate (3-OH MAME) as the quorum sensing (QS) signal by the methyltransferase PhcB and senses the chemical, activating the LysR family transcriptional regulator PhcA, which regulates the QS-dependent genes responsible for QS-dependent phenotypes including virulence. The sensor histidine kinases PhcS and VsrA are reportedly involved in the regulation of QS-dependent genes. To elucidate the function of PhcS and VsrA in the active QS, we generated the phcS-deletion and vsrA-deletion mutants, which exhibited weak changes to their QS-dependent phenotypes including virulence. The phcS and vsrA-deletion mutant (ΔphcS/vsrA) had significant changes in its QS-dependent phenotypes and was nonvirulent, similar to the phcA-deletion mutant. The mutant (PhcS-H230Q) with a substitution of histidine to glutamine at amino acid position 230 in PhcS but not the mutant (VsrA-H256Q) with a substitution of histidine to glutamine at amino acid position 256 in VsrA exhibited significant changes in QS-dependent phenotypes and lost virulence. The transcriptome analysis with RNA-sequencing revealed significant alterations to the expression of QS-dependent genes in the ΔphcS/vsrA and PhcS-H230Q but not VsrA-H256Q, similar to the phcA-deletion mutant. The exogenous 3-OH MAME application led to a significantly enhanced QS-inducible major exopolysaccharide EPS I production of the strain OE1-1 and phcB-deletion mutant but not ΔphcS/vsrA and PhcS-H230Q. Collectively, results of the present genetic study suggested that PhcS contributes to QS along with VsrA and that histidine at amino acid position 230 of PhcS is required for 3-OH MAME sensing, thereby influencing QS-dependent phenotypes including virulence of the strain OE1-1. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Wakana Senuma
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kazusa Hayashi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Chika Takemura
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
3
|
Li P, Bez C, Zhang Y, Deng Y, Venturi V. N-acyl homoserine lactone cell-cell diffusible signalling in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2024; 25:e13467. [PMID: 39099210 PMCID: PMC11298618 DOI: 10.1111/mpp.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen University, Sun Yatsen UniversityShenzhenChina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome Center, University Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| |
Collapse
|
4
|
Suenaga M, Katayama N, Kitamura K, Kai K. Structures and Biosynthesis of Caryoynencins, Unstable Bacterial Polyynes from Pseudomonas protegens Recombinant Expressing the cayG Gene. J Org Chem 2023; 88:16280-16291. [PMID: 37947517 DOI: 10.1021/acs.joc.3c01789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Bacteria in certain genera can produce "bacterial polyynes" that contain a conjugated C≡C bond starting from a terminal alkyne. Protegenin A is a derivative of octadecanoic acid that contains an ene-tetrayne moiety. It was discovered in Pseudomonas protegens Cab57 and exhibits strong antioomycete and moderate antifungal activity. By introducing cayG, a cytochrome P450 gene from Burkholderia caryophylli, into P. protegens Cab57, protegenin A was converted into more complex polyynes, caryoynencins A-E. A purification method that minimized the degradation and isomerization of caryoynencins was established. For the first time, as far as we know, the 1H and 13C{1H} NMR signals of caryoynencins were completely assigned by analyzing the NMR data of the isolated compounds and protegenin A enriched with [1-13C]- or [2-13C]-acetate. Through the structural analysis of caryoynencins D/E and bioconversion experiments, we observed that CayG constructs the allyl alcohol moiety of caryoynencins A-C through sequential hydroxylation, dehydration, and hydroxylation. The recombinant strain exhibited a stronger antioomycete activity compared to the wild-type strain. This paper proposes a stable purification and structural determination method for various bacterial polyynes, and P. protegens Cab57 holds promise as an engineering host for the production of biologically active polyynes.
Collapse
Affiliation(s)
- Mayuna Suenaga
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Naoka Katayama
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kokoro Kitamura
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Takemura C, Senuma W, Tsuzuki M, Terazawa Y, Inoue K, Sato M, Kiba A, Ohnishi K, Kai K, Hikichi Y. The transcription regulator ChpA affects the global transcriptome including quorum sensing-dependent genes in Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2023; 24:1370-1384. [PMID: 37452484 PMCID: PMC10576176 DOI: 10.1111/mpp.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The gram-negative plant-pathogenic β-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal through methyltransferase PhcB and senses the chemical via the sensor histidine kinase PhcS. This leads to activation of the LysR family transcription regulator PhcA, which regulates the genes (QS-dependent genes) responsible for QS-dependent phenotypes, including virulence. The transcription regulator ChpA, which possesses a response regulator receiver domain and also a hybrid sensor histidine kinase/response regulator phosphore-acceptor domain but lacks a DNA-binding domain, is reportedly involved in QS-dependent biofilm formation and virulence of R. pseudosolanacearum strain GMI1000. To explore the function of ChpA in QS of OE1-1, we generated a chpA-deletion mutant (ΔchpA) and revealed that the chpA deletion leads to significantly altered QS-dependent phenotypes. Furthermore, ΔchpA exhibited a loss in its infectivity in xylem vessels of tomato plant roots, losing virulence on tomato plants, similar to the phcA-deletion mutant (ΔphcA). Transcriptome analysis showed that the transcript levels of phcB, phcQ, phcR, and phcA in ΔchpA were comparable to those in OE1-1. However, the transcript levels of 89.9% and 88.9% of positively and negatively QS-dependent genes, respectively, were significantly altered in ΔchpA compared with OE1-1. Furthermore, the transcript levels of these genes in ΔchpA were positively correlated with those in ΔphcA. Together, our results suggest that ChpA is involved in the regulation of these QS-dependent genes, thereby contributing to the behaviour in host plant roots and virulence of OE1-1.
Collapse
Affiliation(s)
- Chika Takemura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kochi Prefectural Agriculture Research CenterNankokuJapan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Central Research Institute, Ishihara Sangyo Kaisha, Ltd.KusatsuJapan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kumamoto Experimental Station, Sumika Agrotech Co., Ltd.KikuchiJapan
| | - Kanako Inoue
- Research Center for Ultra‐High Voltage Electron MicroscopyOsaka UniversityIbarakiJapan
- Present address:
Division of Biological Sciences Plant Immunity, Nara Institute of Science and TechnologyIkomaJapan
| | - Masanao Sato
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kenji Kai
- Graduate School of AgricultureOsaka Metropolitan UniversitySakaiJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| |
Collapse
|
6
|
Abstract
Ralstonia solanacearum species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is phc quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The phc regulatory elements encoded by the phcBSRQ operon and phcA gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the phc QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan;
| |
Collapse
|
7
|
Tsumori C, Matsuo S, Murai Y, Kai K. Quorum Sensing-Dependent Invasion of Ralstonia solanacearum into Fusarium oxysporum Chlamydospores. Microbiol Spectr 2023; 11:e0003623. [PMID: 37367297 PMCID: PMC10433826 DOI: 10.1128/spectrum.00036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Strains of the Ralstonia solanacearum species complex (RSSC), although known as the causative agent of bacterial wilt disease in plants, induce the chlamydospores of many fungal species and invade them through the spores. The lipopeptide ralstonins are the chlamydospore inducers produced by RSSC and are essential for this invasion. However, no mechanistic investigation of this interaction has been conducted. In this study, we report that quorum sensing (QS), which is a bacterial cell-cell communication, is important for RSSC to invade the fungus Fusarium oxysporum (Fo). ΔphcB, a deletion mutant of QS signal synthase, lost the ability to both produce ralstonins and invade Fo chlamydospores. The QS signal methyl 3-hydroxymyristate rescued these disabilities. In contrast, exogenous ralstonin A, while inducing Fo chlamydospores, failed to rescue the invasive ability. Gene-deletion and -complementation experiments revealed that the QS-dependent production of extracellular polysaccharide I (EPS I) is essential for this invasion. The RSSC cells adhered to Fo hyphae and formed biofilms there before inducing chlamydospores. This biofilm formation was not observed in the EPS I- or ralstonin-deficient mutant. Microscopic analysis showed that RSSC infection resulted in the death of Fo chlamydospores. Altogether, we report that the RSSC QS system is important for this lethal endoparasitism. Among the factors regulated by the QS system, ralstonins, EPS I, and biofilm are important parasitic factors. IMPORTANCE Ralstonia solanacearum species complex (RSSC) strains infect both plants and fungi. The phc quorum-sensing (QS) system of RSSC is important for parasitism on plants, because it allows them to invade and proliferate within the hosts by causing appropriate activation of the system at each infection step. In this study, we confirm that ralstonin A is important not only for Fusarium oxysporum (Fo) chlamydospore induction but also for RSSC biofilm formation on Fo hyphae. Extracellular polysaccharide I (EPS I) is also essential for biofilm formation, while the phc QS system controls these factors in terms of production. The present results advocate a new QS-dependent mechanism for the process by which a bacterium invades a fungus.
Collapse
Affiliation(s)
- Chiaki Tsumori
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Shoma Matsuo
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Yuta Murai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
8
|
Senuma W, Tsuzuki M, Takemura C, Terazawa Y, Inoue K, Kiba A, Ohnishi K, Kai K, Hikichi Y. β-1,4-Cellobiohydrolase is involved in full expression of phcA, contributing to the feedback loop in quorum sensing of Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2023; 24:549-559. [PMID: 36912776 DOI: 10.1111/mpp.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 05/18/2023]
Abstract
After infecting roots of tomato plants, the gram-negative bacterium Ralstonia pseudosolanacearum strain OE1-1 activates quorum sensing (QS) to induce production of plant cell wall-degrading enzymes, such as β-1,4-endoglucanase (Egl) and β-1,4-cellobiohydrolase (CbhA), via the LysR family transcriptional regulator PhcA and then invades xylem vessels to exhibit virulence. The phcA-deletion mutant (ΔphcA) exhibits neither the ability to infect xylem vessels nor virulence. Compared with strain OE1-1, the egl-deletion mutant (Δegl) exhibits lower cellulose degradation activity, lower infectivity in xylem vessels, and reduced virulence. In this study, we analysed functions of CbhA other than cell wall degradation activity that are involved in the virulence of strain OE1-1. The cbhA-deletion mutant (ΔcbhA) lacked the ability to infect xylem vessels and displayed loss of virulence, similar to ΔphcA, but exhibited less reduced cellulose degradation activity compared with Δegl. Transcriptome analysis revealed that the phcA expression levels in ΔcbhA were significantly lower than in OE1-1, with significantly altered expression of more than 50% of PhcA-regulated genes. Deletion of cbhA led to a significant change in QS-dependent phenotypes, similar to the effects of phcA deletion. Complementation of ΔcbhA with native cbhA or transformation of this mutant with phcA controlled by a constitutive promoter recovered its QS-dependent phenotypes. The expression level of phcA in ΔcbhA-inoculated tomato plants was significantly lower than in strain OE1-1-inoculated plants. Our results collectively suggest that CbhA is involved in the full expression of phcA, thereby contributing to the QS feedback loop and virulence of strain OE1-1.
Collapse
Affiliation(s)
- Wakana Senuma
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Chika Takemura
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
9
|
Matsukawa N, Tsumori C, Ohnishi K, Kai K. Discovery of Cyclic Lipopeptides Ralstopeptins A and B from Ralstonia solanacearum Species Complex and Analysis of Biosynthetic Gene Evolution. ACS Chem Biol 2023; 18:572-582. [PMID: 36811556 DOI: 10.1021/acschembio.2c00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) strains are plant pathogens that produce lipopeptides (ralstonins and ralstoamides) by the polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) enzyme hybrid. Recently, ralstonins were found to be key molecules in the parasitism of RSSC to other hosts, Aspergillus and Fusarium fungi. The PKS-NRPS genes of RSSC strains in the GenBank database suggest the production of additional lipopeptides, although it has not been confirmed to date. Here, we report the genome-driven and mass-spectrometry-guided discovery, isolation, and structural elucidation of ralstopeptins A and B from strain MAFF 211519. Ralstopeptins were found to be cyclic lipopeptides with two amino acid residues less than ralstonins. The partial deletion of the gene encoding PKS-NRPS obliterated the production of ralstopeptins in MAFF 211519. Bioinformatic analyses suggested possible evolutionary events of the biosynthetic genes of RSSC lipopeptides, where intragenomic recombination may have occurred within the PKS-NRPS genes, reducing the gene size. The chlamydospore-inducing activities of ralstopeptins A and B, ralstonins A and B, and ralstoamide A in the fungus Fusarium oxysporum indicated a structural preference for ralstonins. Altogether, we propose a model for the evolutionary processes that contribute to the chemical diversity of RSSC lipopeptides and its relation to the endoparasitism of RSSC in fungi.
Collapse
Affiliation(s)
- Nao Matsukawa
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chiaki Tsumori
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
10
|
Inoue K, Takemura C, Senuma W, Maeda H, Kai K, Kiba A, Ohnishi K, Tsuzuki M, Hikichi Y. The behavior of Ralstonia pseudosolanacearum strain OE1-1 and morphological changes of cells in tomato roots. JOURNAL OF PLANT RESEARCH 2023; 136:19-31. [PMID: 36427093 DOI: 10.1007/s10265-022-01427-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The soil-borne Gram-negative β-proteobacterium Ralstonia solanacearum species complex (RSSC) infects tomato roots through the wounds where secondary roots emerge, infecting xylem vessels. Because it is difficult to observe the behavior of RSSC by a fluorescence-based microscopic approach at high magnification, we have little information on its behavior at the root apexes in tomato roots. To analyze the infection route of a strain of phylotype I of RSSC, R. pseudosolanacearum strain OE1-1, which invades tomato roots through the root apexes, we first developed an in vitro pathosystem using 4 day-old-tomato seedlings without secondary roots co-incubated with the strain OE1-1. The microscopic observation of toluidine blue-stained longitudinal semi-thin resin sections of tomato roots allowed to detect attachment of the strain OE1-1 to surfaces of the meristematic and elongation zones in tomato roots. We then observed colonization of OE1-1 in intercellular spaces between epidermis and cortex in the elongation zone, and a detached epidermis in the elongation zone. Furthermore, we observed cortical and endodermal cells without a nucleus and with the cell membrane pulling away from the cell wall. The strain OE1-1 next invaded cell wall-degenerated cortical cells and formed mushroom-shaped biofilms to progress through intercellular spaces of the cortex and endodermis, infecting pericycle cells and xylem vessels. The deletion of egl encoding β-1,4-endoglucanase, which is one of quorum sensing (QS)-inducible plant cell wall-degrading enzymes (PCDWEs) secreted via the type II secretion system (T2SS) led to a reduced infectivity in cortical cells. Furthermore, the QS-deficient and T2SS-deficient mutants lost their infectivity in cortical cells and the following infection in xylem vessels. Taking together, infection of OE1-1, which attaches to surfaces of the meristematic and elongation zones, in cortical cells of the elongation zone in tomato roots, dependently on QS-inducible PCDWEs secreted via the T2SS, leads to its subsequent infection in xylem vessels.
Collapse
Affiliation(s)
- Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Chika Takemura
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Wakana Senuma
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Hidefumi Maeda
- Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan.
| |
Collapse
|
11
|
Li P, Cao X, Zhang L, Lv M, Zhang LH. PhcA and PhcR Regulate Ralsolamycin Biosynthesis Oppositely in Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2022; 13:903310. [PMID: 35712573 PMCID: PMC9197120 DOI: 10.3389/fpls.2022.903310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Ralsolamycin, one of secondary metabolites in Ralstonia solanacearum, is known to be involved in crosstalk between R. solanacearum and fungi. Ralsolamycin formation is catalyzed by two-hybrid synthetases of RmyA (non-ribosomal peptide synthetase) and RmyB (polyketide synthase). A methyltransferase PhcB catalyzes formation of 3-OH MAME or 3-OH PAME, signals for the quorum sensing (QS) in R. solanacearum, while PhcB positively modulates ralsolamycin biosynthesis. A two-component system of PhcS and PhcR can response these QS signals and activate phcA expression. Here, we experimentally demonstrated that deletion of phcA (ΔphcA) substantially impaired the ralsolamycin production and expression of rmyA and rmyB in R. solanacearum strain EP1, and failed to induce chlamydospore formation of plant fungal pathogen Fusarium oxysporum f. cubense (stran FOC4). However, deletion of phcR significantly increased ralsolamycin production and expression of rmyA and rmyB, and phcR mutants exhibited enhanced ability to induce chlamydospore formation of FOC4. Results of the electrophoretic mobility shift assay suggested that both PhcA and PhcR bind to promoter of rmy operon. Taken together, these results demonstrated that both PhcA and PhcR bind to promoter of rmy operon, but regulate ralsolamycin biosynthesis in an opposite way. It could extend our knowledge on the sophisticated regulatory networks of ralsolamycin biosynthesis in R. solanacearum.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiulan Cao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Xu H, Wang L, Zhang L, Liu W, Zhang Q, Zhang H, Zhang C, Zhang W. Configurational Assignment of Malfilamentoside A and a New Furanone Glycoside Malfilamentoside D. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Takemura C, Senuma W, Hayashi K, Minami A, Terazawa Y, Kaneoka C, Sakata M, Chen M, Zhang Y, Nobori T, Sato M, Kiba A, Ohnishi K, Tsuda K, Kai K, Hikichi Y. PhcQ mainly contributes to the regulation of quorum sensing-dependent genes, in which PhcR is partially involved, in Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2021; 22:1538-1552. [PMID: 34423519 PMCID: PMC8578825 DOI: 10.1111/mpp.13124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 05/29/2023]
Abstract
The gram-negative plant-pathogenic β-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal via the methyltransferase PhcB and senses the chemical through the sensor histidine kinase PhcS. This leads to functionalization of the LysR family transcriptional regulator PhcA, regulating QS-dependent genes responsible for the QS-dependent phenotypes including virulence. The phc operon consists of phcB, phcS, phcR, and phcQ, with the latter two encoding regulator proteins with a receiver domain and a histidine kinase domain and with a receiver domain, respectively. To elucidate the function of PhcR and PhcQ in the regulation of QS-dependent genes, we generated phcR-deletion and phcQ-deletion mutants. Though the QS-dependent phenotypes of the phcR-deletion mutant were largely unchanged, deletion of phcQ led to a significant change in the QS-dependent phenotypes. Transcriptome analysis coupled with quantitative reverse transcription-PCR and RNA-sequencing revealed that phcB, phcK, and phcA in the phcR-deletion and phcQ-deletion mutants were expressed at similar levels as in strain OE1-1. Compared with strain OE1-1, expression of 22.9% and 26.4% of positively and negatively QS-dependent genes, respectively, was significantly altered in the phcR-deletion mutant. However, expression of 96.8% and 66.9% of positively and negatively QS-dependent genes, respectively, was significantly altered in the phcQ-deletion mutant. Furthermore, a strong positive correlation of expression of these QS-dependent genes was observed between the phcQ-deletion and phcA-deletion mutants. Our results indicate that PhcQ mainly contributes to the regulation of QS-dependent genes, in which PhcR is partially involved.
Collapse
Affiliation(s)
- Chika Takemura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Central Research InstituteIshihara Sangyo Kaisha, LTD.KusatsuShigaJapan
| | - Kazusa Hayashi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Agriculture Research CenterKochi PrefecturalNankokuJapan
| | - Ayaka Minami
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Chisaki Kaneoka
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Megumi Sakata
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Min Chen
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Tatsuya Nobori
- Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Masanao Sato
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Interdisciplinary Sciences Research Institute, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| |
Collapse
|
14
|
Senuma W, Takemura C, Hayashi K, Ishikawa S, Kiba A, Ohnishi K, Kai K, Hikichi Y. The putative sensor histidine kinase PhcK is required for the full expression of phcA encoding the global transcriptional regulator to drive the quorum-sensing circuit of Ralstonia solanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2020; 21:1591-1605. [PMID: 33025726 PMCID: PMC7694676 DOI: 10.1111/mpp.12998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 05/29/2023]
Abstract
A gram-negative plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 produces and extracellularly secretes methyl 3-hydroxymyristate (3-OH MAME), and senses the chemical as a quorum-sensing (QS) signal, activating QS. During QS a functional global transcriptional regulator PhcA, through the 3-OH MAME-dependent two-component system, induces the production of virulence factors including a major extracellular polysaccharide EPS I and ralfuranone. To elucidate the mechanisms of phcA regulation underlying the QS system, among Tn5-mutants from the strain OE1-1, we identified a mutant of RSc1351 gene (phcK), encoding a putative sensor histidine kinase, that exhibited significantly decreased QS-dependent cell aggregation. We generated a phcK-deletion mutant (ΔphcK) that produced significantly less EPS I and ralfuranone than the wild-type strain OE1-1. Quantitative reverse transcription PCR assays showed that the phcA expression level was significantly down-regulated in the ΔphcK mutant but not in other QS mutants. The transcriptome data generated with RNA sequencing technology revealed that the expression levels of 88.2% of the PhcA-positively regulated genes were down-regulated in the ΔphcK mutant, whereas the expression levels of 85.9% of the PhcA-negatively regulated genes were up-regulated. Additionally, the native phcK-expressing complemented ΔphcK strain and the ΔphcK mutant transformed with phcA controlled by a constitutive promoter recovered their cell aggregation phenotypes. Considered together, the results of this study indicate that phcK is required for full phcA expression, thereby driving the QS circuit of R. solanacearum strain OE1-1. This is the first report of the phcA transcriptional regulation of R. solanacearum.
Collapse
Affiliation(s)
- Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Chika Takemura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kazusa Hayashi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kochi Prefectural Agriculture Research CenterNankokuJapan
| | - Shiho Ishikawa
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Sumika Agrotech Co., LtdNiihamaJapan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| |
Collapse
|
15
|
Yoshihara A, Shimatani M, Sakata M, Takemura C, Senuma W, Hikichi Y, Kai K. Quorum Sensing Inhibition Attenuates the Virulence of the Plant Pathogen Ralstonia solanacearum Species Complex. ACS Chem Biol 2020; 15:3050-3059. [PMID: 33172253 DOI: 10.1021/acschembio.0c00752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strains of Ralstonia solanacearum species complex (RSSC) cause "bacterial wilt" on a wide range of plant species and thus lead to marked economic losses in agriculture. Quorum sensing (QS), a bacterial cell-cell communication mechanism, controls the virulence of RSSC strains by regulating the production of extracellular polysaccharide (EPS) and secondary metabolites, biofilm formation, and cellular motility. R. solanacearum strain OE1-1 employs (R)-methyl 3-hydroxymyristate (3-OH MAME) as a QS signal, which is synthesized by the PhcB methyltransferase and sensed by the PhcS/PhcRQ two-component system. We describe the design, synthesis, and biological evaluation of inhibitors of the phc QS system. Initial screening of a small set of QS signal analogues revealed that methyl 3-hydroxy-8-phenyloctanoate, named, PQI-1 (phc quorum sensing inhibitor-1), inhibited biofilm formation by strain OE1-1. To improve its inhibitory activity, the derivatives of PQI-1 were synthesized, and their QS inhibition activities were evaluated. PQIs-2-5 evolved from PQI-1 more strongly inhibited not only biofilm formation but also the production of ralfuranone and EPS. Furthermore, RNA-Seq analysis revealed that the PQIs effectively inhibited QS-dependent gene expression and repression in strain OE1-1. On the other hand, the PQIs did not affect the canonical QS systems of the representative reporter bacteria. These antagonists, especially PQI-5, reduced wilting symptoms of the tomato plants infected with strain OE1-1. Taken together, we suggest that targeting the phc QS system has potential for the development of chemicals that protect agricultural crops from bacterial wilt disease.
Collapse
Affiliation(s)
- Ayaka Yoshihara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Megumi Sakata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chika Takemura
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Wakana Senuma
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
16
|
Komatsu S, Tsumori C, Ohnishi K, Kai K. Genome- and Mass Spectrometry-Guided Discovery of Ralstoamides A and B from Ralstonia solanacearum Species Complex. ACS Chem Biol 2020; 15:2860-2865. [PMID: 33112588 DOI: 10.1021/acschembio.0c00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strains of Ralstonia solanacearum species complex (RSSC) are devastating plant pathogens distributed globally with a wide host range and genetic diversity. Many RSSC strains harbor the polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid gene rmyA/rmyB for ralstonin production. We report that ralstoamides A (1) and B (2), which are ralstonin-like but shorter lipopeptides, were discovered from the Japanese strains using accumulated RSSC genome data and LC/MS-based metabolite analysis. Their structures, including absolute configurations, were elucidated by spectroscopic analysis and chemical techniques. ramA, a PKS-NRPS gene for ralstoamide production, was identified from the producer strains by genome sequencing and gene-deletion experiments. Based on the analysis of biosynthetic genes of ralstoamides and ralstonins, we suggest the occurrence of NRPS-module reduction of rmyA/rmyB genes in some RSSC strains. This possible molecular evolution changed not only the structures, but also the biological activity of RSSC lipopeptides.
Collapse
Affiliation(s)
- Shoko Komatsu
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| | - Chiaki Tsumori
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
17
|
Hayashi K, Senuma W, Kai K, Kiba A, Ohnishi K, Hikichi Y. Major exopolysaccharide, EPS I, is associated with the feedback loop in the quorum sensing of Ralstonia solanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2019; 20:1740-1747. [PMID: 31560834 PMCID: PMC6859485 DOI: 10.1111/mpp.12870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Gram-negative soil-borne bacterium Ralstonia solanacearum first infects roots of host plants and then invades xylem vessels. In xylem vessels, the bacteria grow vigorously and produce exopolysaccharides (EPSs) to cause a wilt symptom on host plants. The EPSs are thus the main virulence factors of R. solanacearum. The strain OE1-1 of R. solanacearum produces methyl 3-hydroxymyristate as a quorum-sensing (QS) signal, and senses this QS signal, activating QS. The QS-activated LysR-type transcriptional regulator PhcA induces the production of virulence-related metabolites including ralfuranone and the major EPS, EPS I. To elucidate the function of EPS I, the transcriptomes of R. solanacearum strains were analysed using RNA sequencing technology. The expression of 97.2% of the positively QS-regulated genes was down-regulated in the epsB-deleted mutant ΔepsB, which lost its EPS I productivity. Furthermore, expression of 98.0% of the negatively QS-regulated genes was up-regulated in ΔepsB. The deficiency to produce EPS I led to a significantly suppressed ralfuranone productivity and significantly enhanced swimming motility, which are suppressed by QS, but did not affect the expression levels of phcA and phcB, which encode a methyltransferase required for methyl 3-hydroxymyristate production. Overall, QS-dependently produced EPS I may be associated with the feedback loop of QS.
Collapse
Affiliation(s)
- Kazusa Hayashi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
- Present address:
Kochi Prefectural Agriculture Research CenterNankokuKochi783‐0023Japan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuKochi783‐8502Japan
| |
Collapse
|
18
|
Ujita Y, Sakata M, Yoshihara A, Hikichi Y, Kai K. Signal Production and Response Specificity in the phc Quorum Sensing Systems of Ralstonia solanacearum Species Complex. ACS Chem Biol 2019; 14:2243-2251. [PMID: 31513382 DOI: 10.1021/acschembio.9b00553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ralstonia solanacearum strains are devastating plant pathogens with global distribution, a wide host range, and genetic diversity, and they are now also referred to as the R. solanacearum species complex (RSSC). RSSC strains employ the quorum sensing (QS) system composed of the phcBSR operon to regulate their virulence on plants. The RSSC strains previously examined produce either (R)-methyl 3-hydroxymyristate (3-OH MAME) or (R)-methyl 3-hydroxypalmitate (3-OH PAME) as their QS signals. Analogously, the phylogenetic analyses of the signal synthase PhcB and the signal receptor PhcS from 15 RSSC strains revealed that these proteins have two clades dependent on their QS signal types. However, the biochemical mechanism underlying this selectivity of QS signal production remains to be elucidated. We demonstrated that the PhcB methyltransferases synthesize QS signals from the cognate fatty acids (R)-3-hydroxymyristic acid or (R)-3-hydroxypalmitic acid. The RSSC strains used here produced both fatty acids, and thus the selectivity of QS signal production depends on the activity of PhcB enzymes. On the other hand, the enantioselective supply of the precursors functioned in the production of enantiopure QS signals. The opposite QS signals weakly induced the production of virulence factors in the RSSC strains. Furthermore, the complementation of the phcB gene encoding the 3-OH PAME-type synthase to the phcB-deletion mutant of the 3-OH MAME-producing strain did not rescue its virulence on tomato plants. Taken together, we propose that the specific production of 3-OH MAME/3-OH PAME ensures full virulence of the RSSC strains.
Collapse
Affiliation(s)
- Yumeto Ujita
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Megumi Sakata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ayaka Yoshihara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
19
|
Kai K. Bioorganic chemistry of signaling molecules in microbial communication. JOURNAL OF PESTICIDE SCIENCE 2019; 44:200-207. [PMID: 31530977 PMCID: PMC6718359 DOI: 10.1584/jpestics.j19-02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 06/01/2023]
Abstract
Microorganisms produce and secrete a variety of secondary metabolites including fatty acids, polyketides, terpenoids, alkaloids, and peptides. Among them, many molecules act as chemical signals that play important roles in inter-/intra-species microbial communication or the interaction with host organisms. In this review, I focus on our recent reports of the microbial signaling molecules involved in bacterium-fungus, bacterium-plant, and fungus-plant interactions. Their potential contribution to pest management is also discussed.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefectural University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka 599–8531, Japan
| |
Collapse
|
20
|
Ishikawa Y, Murai Y, Sakata M, Mori S, Matsuo S, Senuma W, Ohnishi K, Hikichi Y, Kai K. Activation of Ralfuranone/Ralstonin Production by Plant Sugars Functions in the Virulence of Ralstonia solanacearum. ACS Chem Biol 2019; 14:1546-1555. [PMID: 31246411 DOI: 10.1021/acschembio.9b00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plant pathogenic bacteria possess sophisticated mechanisms to detect the presence of host plants by sensing host-derived compounds. Ralstonia solanacearum, the causative agent of bacterial wilt on solanaceous plants, employs quorum sensing to control the production of the secondary metabolite ralfuranones/ralstonins, which have been suggested to be involved in virulence. Here, we report that d-galactose and d-glucose, plant sugars, activate the production of ralfuranones/ralstonins in R. solanacearum. As a result, two new derivatives, ralfuranone M (1) and ralstonin C (2), were found in the culture extracts, and their structures were elucidated by spectroscopic and chemical methods. Ralstonin C (2) is a cyclic lipopeptide containing a unique fatty acid, (2S,3S,Z)-3-amino-2-hydroxyicos-13-enoic acid, whereas ralfuranone M (1) has a common aryl-furanone structure with other ralfuranones. d-Galactose and d-glucose activated the expression of the biosynthetic ralfuranone/ralstonin genes and in part became the biosynthetic source of ralfuranones/ralstonins. Ralfuranones and ralstonins were detected from the xylem fluid of the infected tomato plants, and their production-deficient mutants exhibited reduced virulence on tomato and tobacco plants. Taken together, these results suggest that activation of ralfuranone/ralstonin production by host sugars functions in R. solanacearum virulence.
Collapse
Affiliation(s)
- Yoko Ishikawa
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Yuta Murai
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Megumi Sakata
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Shoko Mori
- Bioorganic Research Institute , Suntory Foundation for Life Sciences , 8-1-1 Seikadai, Seika-cho , Soraku-gun, Kyoto 619-0284 , Japan
| | - Shoma Matsuo
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Wakana Senuma
- Laboratory of Plant Pathology and Biotechnology , Kochi University , 200 Otsu, Monobe , Nanko-ku, Kochi 783-8502 , Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics , Kochi University , 200 Otsu, Monobe , Nanko-ku, Kochi 783-8502 , Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology , Kochi University , 200 Otsu, Monobe , Nanko-ku, Kochi 783-8502 , Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences , Osaka Prefecture University , 1-1 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8531 , Japan
| |
Collapse
|
21
|
Hayashi K, Kai K, Mori Y, Ishikawa S, Ujita Y, Ohnishi K, Kiba A, Hikichi Y. Contribution of a lectin, LecM, to the quorum sensing signalling pathway of Ralstonia solanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2019; 20:334-345. [PMID: 30312504 PMCID: PMC6637872 DOI: 10.1111/mpp.12757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The soil-borne bacterium Ralstonia solanacearum invades the roots and colonizes the intercellular spaces and then the xylem. The expression of lecM, encoding a lectin LecM, is induced by an OmpR family response regulator HrpG in R. solanacearum strain OE1-1. LecM contributes to the attachment of strain OE1-1 to the host cells of intercellular spaces. OE1-1 produces methyl 3-hydroxymyristate (3-OH MAME) through a methyltransferase (PhcB) and extracellularly secretes the chemical as a quorum sensing (QS) signal, which activates QS. The expression of lecM is also induced by the PhcA virulence regulator functioning through QS, and the resulting LecM is implicated in the QS-dependent production of major exopolysaccharide EPS I and the aggregation of OE1-1 cells. To investigate the function of LecM in QS, we analysed the transcriptome of R. solanacearum strains generated by RNA sequencing technology. In the lecM mutant, the expression of positively QS-regulated genes and negatively QS-regulated genes was down-regulated (by >90%) and up-regulated (by ~60%), respectively. However, phcB and phcA in the lecM mutant were expressed at levels similar to those in strain OE1-1. The lecM mutant produced significantly less ralfuranone and exhibited a significantly greater swimming motility, which were positively and negatively regulated by QS, respectively. In addition, the extracellular 3-OH MAME content of the lecM mutant was significantly lower than that of OE1-1. The application of 3-OH MAME more strongly increased EPS I production in the phcB-deleted mutant and strain OE1-1 than in the lecM mutant. Thus, the QS-dependent production of LecM contributes to the QS signalling pathway.
Collapse
Affiliation(s)
- Kazusa Hayashi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Yuka Mori
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| | - Yumeto Ujita
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi UniversityNankokuKochi783‐8502Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| |
Collapse
|
22
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
23
|
Kai K, Sogame M, Sakurai F, Nasu N, Fujita M. Collimonins A–D, Unstable Polyynes with Antifungal or Pigmentation Activities from the Fungus-Feeding Bacterium Collimonas fungivorans Ter331. Org Lett 2018; 20:3536-3540. [DOI: 10.1021/acs.orglett.8b01311] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mai Sogame
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Fumie Sakurai
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Norihiro Nasu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
24
|
Mori Y, Hosoi Y, Ishikawa S, Hayashi K, Asai Y, Ohnishi H, Shimatani M, Inoue K, Ikeda K, Nakayashiki H, Nishimura Y, Ohnishi K, Kiba A, Kai K, Hikichi Y. Ralfuranones contribute to mushroom-type biofilm formation by Ralstonia solanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2018; 19:975-985. [PMID: 28722830 PMCID: PMC6638155 DOI: 10.1111/mpp.12583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/04/2017] [Accepted: 07/15/2017] [Indexed: 06/01/2023]
Abstract
After invasion into intercellular spaces of tomato plants, the soil-borne, plant-pathogenic Ralstonia solanacearum strain OE1-1 forms mushroom-shaped biofilms (mushroom-type biofilms, mBFs) on tomato cells, leading to its virulence. The strain OE1-1 produces aryl-furanone secondary metabolites, ralfuranones (A, B, J, K and L), dependent on the quorum sensing (QS) system, with methyl 3-hydroxymyristate (3-OH MAME) synthesized by PhcB as a QS signal. Ralfuranones are associated with the feedback loop of the QS system. A ralfuranone productivity-deficient mutant (ΔralA) exhibited significantly reduced growth in intercellular spaces compared with strain OE1-1, losing its virulence. To analyse the function of ralfuranones in mBF formation by OE1-1 cells, we observed cell aggregates of R. solanacearum strains statically incubated in tomato apoplast fluids on filters under a scanning electron microscope. The ΔralA strain formed significantly fewer microcolonies and mBFs than strain OE1-1. Supplementation of ralfuranones A, B, J and K, but not L, significantly enhanced the development of mBF formation by ΔralA. Furthermore, a phcB- and ralA-deleted mutant (ΔphcB/ralA) exhibited less formation of mBFs than OE1-1, although a QS-deficient, phcB-deleted mutant formed mBFs similar to OE1-1. Supplementation with 3-OH MAME significantly reduced the formation of mBFs by ΔphcB/ralA. The application of each ralfuranone significantly increased the formation of mBFs by ΔphcB/ralA supplied with 3-OH MAME. Together, our findings indicate that ralfuranones are implicated not only in the development of mBFs by strain OE1-1, but also in the suppression of QS-mediated negative regulation of mBF formation.
Collapse
Affiliation(s)
- Yuka Mori
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Yuki Hosoi
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Kazusa Hayashi
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Yu Asai
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Hideyuki Ohnishi
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Kanako Inoue
- Research Center for Ultra‐High Voltage Electron MicroscopyOsaka University, MihogaokaIbarakiOsaka567‐0047Japan
| | - Kenichi Ikeda
- Graduate School of Agricultural ScienceKobe UniversityNada‐ku, KobeHyogo657‐8501Japan
| | - Hitoshi Nakayashiki
- Graduate School of Agricultural ScienceKobe UniversityNada‐ku, KobeHyogo657‐8501Japan
| | - Yasuyo Nishimura
- Laboratory of Horticultural ScienceKochi University, NankokuKochi783‐8502Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular GeneticsKochi University, NankokuKochi783‐8502Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| |
Collapse
|
25
|
Kai K. Bacterial quorum sensing in symbiotic and pathogenic relationships with hosts. Biosci Biotechnol Biochem 2018; 82:363-371. [PMID: 29424268 DOI: 10.1080/09168451.2018.1433992] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gram-negative bacteria communicate with each other by producing and sensing diffusible signaling molecules. This mechanism is called quorum sensing (QS) and regulates many bacterial activities from gene expression to symbiotic/pathogenic interactions with hosts. Therefore, the elucidation and control of bacterial QS systems have been attracted increasing attention over the past two decades. The most common QS signals in Gram-negative bacteria are N-acyl homoserine lactones (AHLs). There are also bacteria that employ different QS systems, for example, the plant pathogen Ralstonia solanacearum utilizes 3-hydroxy fatty acid methyl esters as its QS signals. The QS system found in the endosymbiotic bacterium associated with the fungus Mortierella alpina, the development of an affinity pull-down method for AHL synthases, and the elucidation of a unique QS circuit in R. solanacearum are discussed herein.
Collapse
Affiliation(s)
- Kenji Kai
- a Graduate School of Life and Environmental Sciences , Osaka Prefecture University , Osaka , Japan
| |
Collapse
|
26
|
Mori Y, Ishikawa S, Ohnishi H, Shimatani M, Morikawa Y, Hayashi K, Ohnishi K, Kiba A, Kai K, Hikichi Y. Involvement of ralfuranones in the quorum sensing signalling pathway and virulence of Ralstonia solanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2018; 19:454-463. [PMID: 28116815 PMCID: PMC6638173 DOI: 10.1111/mpp.12537] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 05/02/2023]
Abstract
The soil-borne, plant-pathogenic Ralstonia solanacearum strain OE1-1 produces and secretes methyl 3-hydroxymyristate (3-OH MAME) as a quorum sensing (QS) signal, which contributes to its virulence. A global virulence regulator, PhcA, functioning through the QS system, positively regulates the expression of ralA, which encodes furanone synthase, to produce aryl-furanone secondary metabolites, ralfuranones. A ralfuranone-deficient mutant (ΔralA) is weakly virulent when directly inoculated into tomato xylem vessels. To investigate the functions of ralfuranones, we analysed R. solanacearum transcriptome data generated by RNA sequencing technology. ΔralA expressed phcB, which is associated with 3-OH MAME production, and phcA at levels similar to those in strain OE1-1. In addition, ΔralA exhibited down-regulated expression of more than 90% of the QS positively regulated genes, and up-regulated expression of more than 75% of the QS negatively regulated genes. These results suggest that ralfuranones affect the QS feedback loop. Ralfuranone supplementation restored the ability of ΔralA cells to aggregate. In addition, ralfuranones A and B restored the swimming motility of ΔralA to wild-type levels. However, the application of exogenous ralfuranones did not affect the production of the major exopolysaccharide, EPS I, in ΔralA. Quantitative real-time polymerase chain reaction assays revealed that the deletion of ralA results in the down-regulated expression of vsrAD and vsrBC, which encode a sensor kinase and a response regulator, respectively, in the two-component regulatory systems that influence EPS I production. The application of ralfuranone B restored the expression of these two genes. Overall, our findings indicate that integrated signalling via ralfuranones influences the QS and virulence of R. solanacearum.
Collapse
Affiliation(s)
- Yuka Mori
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Hideyuki Ohnishi
- Graduate School of Life and Environmental SciencesOsaka Prefecture University, SakaiOsaka599‐8531Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental SciencesOsaka Prefecture University, SakaiOsaka599‐8531Japan
| | - Yukino Morikawa
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Kazusa Hayashi
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular GeneticsKochi University, NankokuKochi783‐8502Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture University, SakaiOsaka599‐8531Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi University, NankokuKochi783‐8502Japan
| |
Collapse
|
27
|
Baldeweg F, Kage H, Schieferdecker S, Allen C, Hoffmeister D, Nett M. Structure of Ralsolamycin, the Interkingdom Morphogen from the Crop Plant Pathogen Ralstonia solanacearum. Org Lett 2017; 19:4868-4871. [PMID: 28846435 DOI: 10.1021/acs.orglett.7b02329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ralsolamycin, an inducer of chlamydospore formation in fungi, was recently reported from the plant pathogenic bacterium Ralstonia solanacearum. Although interpretation of tandem mass data and bioinformatics enabled a preliminary chemical characterization, the full structure of ralsolamycin was not resolved. We now report the recovery of this secondary metabolite from an engineered R. solanacearum strain. The structure of ralsolamycin was elucidated by extensive spectroscopic analyses. Chemical derivatization as well as bioinformatics were used to assign the absolute stereochemistry. Our results identified an erroneous genome sequence, thereby emphasizing the value of chemical methods to complement bioinformatics-based procedures in natural product research.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-University Jena , Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Hirokazu Kage
- Department of Biochemical and Chemical Engineering, Technical University Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Sebastian Schieferdecker
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison , 1630 Linden Drive, Madison, Wisconsin 53706, United States
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-University Jena , Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Technical University Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
28
|
Murai Y, Mori S, Konno H, Hikichi Y, Kai K. Ralstonins A and B, Lipopeptides with Chlamydospore-Inducing and Phytotoxic Activities from the Plant Pathogen Ralstonia solanacearum. Org Lett 2017; 19:4175-4178. [PMID: 28753290 DOI: 10.1021/acs.orglett.7b01685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ralstonia solanacearum has an orphan hybrid polyketide synthase-nonribosomal peptide synthetase gene cluster. We herein isolate its products (named ralstonins A and B) from R. solanacearum and elucidate their structures and biological activities. Ralstonins are unusual lipodepsipeptides composed of 11 amino acids (containing unique amino acids such as β-hydroxytyrosine and dehydroalanine) and a 3-amino-2-hydroxyoctadecanoic acid, and their production is controlled by quorum sensing, a mechanism of bacterial cell-cell communication. Ralstonins exhibited chlamydospore-inducing activity and phytotoxicity.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences , 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Technology, Yamagata University , 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University , 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
29
|
Li P, Yin W, Yan J, Chen Y, Fu S, Song S, Zhou J, Lyu M, Deng Y, Zhang LH. Modulation of Inter-kingdom Communication by PhcBSR Quorum Sensing System in Ralstonia solanacearum Phylotype I Strain GMI1000. Front Microbiol 2017; 8:1172. [PMID: 28690607 PMCID: PMC5481312 DOI: 10.3389/fmicb.2017.01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 01/16/2023] Open
Abstract
Ralstonia solanacearum is a ubiquitous soil-borne plant pathogenic bacterium, which frequently encounters and interacts with other soil cohabitants in competition for environmental niches. Ralsolamycin, which is encoded by the rmy genes, has been characterized as a novel inter-kingdom interaction signal that induces chlamydospore development in fungi. In this study, we provide the first genetic evidence that the rmy gene expression is controlled by the PhcBSR quorum sensing (QS) system in strain GMI1000. Mutation of phcB could lead to significant reduction of the expression levels of the genes involved in ralsolamycin biosynthesis. In addition, both the phcB and rmy mutants were attenuated in induction of chlamydospore formation in Fusarium oxysporum f. cubense and diminished in the ability to compete with the sugarcane pathogen Sporisorium scitamineum. Agreeable with the pattern of QS regulation, transcriptional expression analysis showed that the transcripts of the rmy genes were increased along with the increment of the bacterial population density. Taken together, the above findings provide new insights into the regulatory mechanisms that the QS system involves in governing the ralsolamycin inter-kingdom signaling system.
Collapse
Affiliation(s)
- Peng Li
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,School of Biological and Science Technology, University of JinanJinan, China
| | - Wenfang Yin
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Jinli Yan
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Yufan Chen
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Shuna Fu
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Shihao Song
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Mingfa Lyu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Yinyue Deng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,Institute of Molecular and Cell BiologySingapore, Singapore
| |
Collapse
|
30
|
Hikichi Y, Mori Y, Ishikawa S, Hayashi K, Ohnishi K, Kiba A, Kai K. Regulation Involved in Colonization of Intercellular Spaces of Host Plants in Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2017; 8:967. [PMID: 28642776 PMCID: PMC5462968 DOI: 10.3389/fpls.2017.00967] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/23/2017] [Indexed: 05/25/2023]
Abstract
A soil-borne bacterium Ralstonia solanacearum invading plant roots first colonizes the intercellular spaces of the root, and eventually enters xylem vessels, where it replicates at high levels leading to wilting symptoms. After invasion into intercellular spaces, R. solanacearum strain OE1-1 attaches to host cells and expression of the hrp genes encoding components of the type III secretion system (T3SS). OE1-1 then constructs T3SS and secrets effectors into host cells, inducing expression of the host gene encoding phosphatidic acid phosphatase. This leads to suppressing plant innate immunity. Then, OE1-1 grows on host cells, inducing quorum sensing (QS). The QS contributes to regulation of OE1-1 colonization of intercellular spaces including mushroom-type biofilm formation on host cells, leading to its virulence. R. solanacearum strains AW1 and K60 produce methyl 3-hydroxypalmitate (3-OH PAME) as a QS signal. The methyltransferase PhcB synthesizes 3-OH PAME. When 3-OH PAME reaches a threshold level, it increases the ability of the histidine kinase PhcS to phosphorylate the response regulator PhcR. This results in elevated levels of functional PhcA, the global virulence regulator. On the other hand, strains OE1-1 and GMI1000 produce methyl 3-hydroxymyristate (3-OH MAME) as a QS signal. Among R. solanacearum strains, the deduced PhcB and PhcS amino acid sequences are related to the production of QS signals. R. solanacearum produces aryl-furanone secondary metabolites, ralfuranones, which are extracellularly secreted and required for its virulence, dependent on the QS. Interestingly, ralfuranones affect the QS feedback loop. Taken together, integrated signaling via ralfuranones influences the QS, contributing to pathogen virulence.
Collapse
Affiliation(s)
- Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Yuka Mori
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Kazusa Hayashi
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi UniversityKochi, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversityOsaka, Japan
| |
Collapse
|
31
|
Matilla MA, Nogellova V, Morel B, Krell T, Salmond GPC. Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid in Serratia is regulated by Hfq and the LysR-type transcriptional regulator, AdmX. Environ Microbiol 2016; 18:3635-3650. [PMID: 26914969 PMCID: PMC5216899 DOI: 10.1111/1462-2920.13241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Infections due to multidrug-resistant bacteria represent a major global health challenge. To combat this problem, new antibiotics are urgently needed and some plant-associated bacteria are a promising source. The rhizobacterium Serratia plymuthica A153 produces several bioactive secondary metabolites, including the anti-oomycete and antifungal haterumalide, oocydin A and the broad spectrum polyamine antibiotic, zeamine. In this study, we show that A153 produces a second broad spectrum antibiotic, andrimid. Using genome sequencing, comparative genomics and mutagenesis, we defined new genes involved in andrimid (adm) biosynthesis. Both the expression of the adm gene cluster and regulation of andrimid synthesis were investigated. The biosynthetic cluster is operonic and its expression is modulated by various environmental cues, including temperature and carbon source. Analysis of the genome context of the adm operon revealed a gene encoding a predicted LysR-type regulator, AdmX, apparently unique to Serratia strains. Mutagenesis and gene expression assays demonstrated that AdmX is a transcriptional activator of the adm gene cluster. At the post-transcriptional level, the expression of the adm cluster is positively regulated by the RNA chaperone, Hfq, in an RpoS-independent manner. Our results highlight the complexity of andrimid biosynthesis - an antibiotic with potential clinical and agricultural utility.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
- Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasProf. Albareda 1Granada18008Spain
| | - Veronika Nogellova
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Bertrand Morel
- Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasProf. Albareda 1Granada18008Spain
| | - Tino Krell
- Department of Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasProf. Albareda 1Granada18008Spain
| | - George P. C. Salmond
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
32
|
Kai K, Ohnishi H, Kiba A, Ohnishi K, Hikichi Y. Studies on the biosynthesis of ralfuranones in Ralstonia solanacearum. Biosci Biotechnol Biochem 2016; 80:440-4. [DOI: 10.1080/09168451.2015.1116931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Ralfuranones, aryl-furanone secondary metabolites, are involved in the virulence of Ralstonia solanacearum in solanaceous plants. Ralfuranone I (6) has been suggested as a biosynthetic precursor for other ralfuranones; however, this conversion has not been confirmed. We herein investigate the biosynthesis of ralfuranones using feeding experiments with ralfuranone I (6) and its putative metabolite, ralfuranone B (2). The results obtained demonstrated that the biosynthesis of ralfuranones proceeded in enzymatic and non-enzymatic manners.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Hideyuki Ohnishi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Kochi, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Kochi, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Kochi, Japan
| |
Collapse
|
33
|
Kai K, Ohnishi H, Shimatani M, Ishikawa S, Mori Y, Kiba A, Ohnishi K, Tabuchi M, Hikichi Y. Methyl 3-Hydroxymyristate, a Diffusible Signal MediatingphcQuorum Sensing inRalstonia solanacearum. Chembiochem 2015; 16:2309-18. [DOI: 10.1002/cbic.201500456] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences; Osaka Prefecture University; 1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
| | - Hideyuki Ohnishi
- Graduate School of Life and Environmental Sciences; Osaka Prefecture University; 1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental Sciences; Osaka Prefecture University; 1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and Biotechnology; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| | - Yuka Mori
- Laboratory of Plant Pathology and Biotechnology; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| | - Mitsuaki Tabuchi
- Faculty of Agriculture; Kagawa University; 2393 Ikenobe Miki-cho Kagawa 761-0795 Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology; Kochi University; 200 Otsu Monobe Nanko-ku Kochi 783-8502 Japan
| |
Collapse
|