1
|
Khamespanah E, Asad S, Vanak Z, Mehrshad M. Niche-Aware Metagenomic Screening for Enzyme Methioninase Illuminates Its Contribution to Metabolic Syntrophy. MICROBIAL ECOLOGY 2024; 87:141. [PMID: 39546027 PMCID: PMC11568061 DOI: 10.1007/s00248-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The single-step methioninase-mediated degradation of methionine (as a sulfur containing amino acid) is a reaction at the interface of carbon, nitrogen, sulfur, and methane metabolism in microbes. This enzyme also has therapeutic application due to its role in starving auxotrophic cancer cells. Applying our refined in silico screening pipeline on 33,469 publicly available genome assemblies and 1878 metagenome assembled genomes/single-cell amplified genomes from brackish waters of the Caspian Sea and the Fennoscandian Shield deep groundwater resulted in recovering 1845 methioninases. The majority of recovered methioninases belong to representatives of phyla Proteobacteria (50%), Firmicutes (29%), and Firmicutes_A (13%). Prevalence of methioninase among anaerobic microbes and in the anoxic deep groundwater together with the relevance of its products for energy conservation in anaerobic metabolism highlights such environments as desirable targets for screening novel methioninases and resolving its contribution to microbial metabolism and interactions. Among archaea, majority of detected methioninases are from representatives of Methanosarcina that are able to use methanethiol, the sulfur containing product from methionine degradation, as a precursor for methanogenesis. Branching just outside these archaeal methioninases in the phylogenetic tree, we recovered three methioninases belonging to representatives of Patescibacteria reconstructed from deep groundwater metagenomes. We hypothesize that methioninase in Patescibacteria could contribute to their syntrophic interactions where their methanogenic partners/hosts benefit from the produced 2-oxobutyrate and methanethiol. Our results underscore the significance of accounting for specific ecological niche in screening for enzyme variates with desired characteristics. Finally, complementing of our findings with experimental validation of methioninase activity confirms the potential of our in silico screening in clarifying the peculiar ecological role of methioninase in anoxic environments.
Collapse
Affiliation(s)
- Erfan Khamespanah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Zeynab Vanak
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
2
|
Abo Qoura L, Balakin KV, Hoffman RM, Pokrovsky VS. The potential of methioninase for cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189122. [PMID: 38796027 DOI: 10.1016/j.bbcan.2024.189122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Cancer cells are addicted to L-methionine (L-Met) and have a much greater requirement for L-Met than normal cells due to excess transmethylation, termed the Hoffman effect. By targeting this vulnerability through dietary restriction of L-Met, researchers have been able to achieve promising results in inhibiting tumor growth and eradicating cancer cells. Methioninase (EC 4.4.1.11; METase) catalyzes the transformation of L-Met into α-ketobutyrate, ammonia, and methanethiol. The use of METase was initially limited due to its poor stability in vivo, high immunogenicity, and enzyme-induced inactivating antibodies. These issues could be partially resolved by PEGylation, encapsulation in erythrocytes, and various site-directed mutagenesis. The big breakthrough came when it was discovered that METase is effectively administered orally. The enzyme L-asparaginase is approved by the FDA for treatment of acute lymphoblastic leukemia. METase has more potential as a therapeutic since addiction to L-Met is a general and fundamental hallmark of cancer.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | | | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA 92111, USA; Department of Surgery, University of California, San Diego, La Jolla, CA 92037-7400, USA
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia.
| |
Collapse
|
3
|
Raboni S, Faggiano S, Bettati S, Mozzarelli A. Methionine gamma lyase: Structure-activity relationships and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140991. [PMID: 38147934 DOI: 10.1016/j.bbapap.2023.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Methionine gamma lyase (MGL) is a bacterial and plant enzyme that catalyzes the conversion of methionine in methanthiol, 2-oxobutanoate and ammonia. The enzyme belongs to fold type I of the pyridoxal 5'-dependent family. The catalytic mechanism and the structure of wild type MGL and variants were determined in the presence of the natural substrate as well as of many sulfur-containing derivatives. Structure-function relationship studies were pivotal for MGL exploitation in the treatment of cancer, bacterial infections, and other diseases. MGL administration to cancer cells leads to methionine starvation, thus decreasing cells viability and increasing their vulnerability towards other drugs. In antibiotic therapy, MGL acts by transforming prodrugs in powerful drugs. Numerous strategies have been pursued for the delivering of MGL in vivo to prolong its bioavailability and decrease its immunogenicity. These include conjugation with polyethylene glycol and encapsulation in synthetic or natural vesicles, eventually decorated with tumor targeting molecules, such as the natural phytoestrogens daidzein and genistein. The scientific achievements in studying MGL structure, function and perspective therapeutic applications came from the efforts of many talented scientists, among which late Tatyana Demidkina to whom we dedicate this review.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy; Department of Medicine, University of Parma, Parma, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| |
Collapse
|
4
|
Javia BM, Gadhvi MS, Vyas SJ, Ghelani A, Wirajana N, Dudhagara DR. A review on L-methioninase in cancer therapy: Precision targeting, advancements and diverse applications for a promising future. Int J Biol Macromol 2024; 265:130997. [PMID: 38508568 DOI: 10.1016/j.ijbiomac.2024.130997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Cancer remains a global health challenge, demanding novel therapeutic options due to the debilitating side effects of conventional treatments on healthy tissues. The review highlights the potential of L-methioninase, a pyridoxal-5-phosphate (PLP)-dependent enzyme, as a promising avenue in alternative cancer therapy. L-methioninase offers a unique advantage, its ability to selectively target and inhibit the growth of cancer cells without harming healthy cells. This selectivity arises because tumor cells lack an essential enzyme called methionine synthase, which healthy cells use to make the vital amino acid L-methionine. Several sources harbor L-methioninase, including bacteria, fungi, plants, and protozoa. Future research efforts can explore and exploit this diverse range of sources to improve the therapeutic potential of L-methioninase in the fight against cancer. Despite challenges, research actively explores microbial L-methioninase for its anticancer potential. This review examines the enzyme's side effects, advancements in combination therapies, recombinant technologies, polymer conjugation and novel delivery methods like nanoparticles, while highlighting the success of oral administration in preclinical trials. Beyond its promising role in cancer therapy, L-methioninase holds potential applications in food science, antioxidants, and various health concerns like diabetes, cardiovascular issues, and neurodegenerative diseases. This review provides a piece of current knowledge and future prospects of L-methioninase, exploring its diverse therapeutic potential.
Collapse
Affiliation(s)
- Bhumi M Javia
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, 362263 Junagadh, Gujarat, India
| | - Megha S Gadhvi
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, 362263 Junagadh, Gujarat, India
| | - Suhas J Vyas
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, 362263 Junagadh, Gujarat, India
| | - Anjana Ghelani
- Shree Ramkrishna Institute of Computer Education and Applied Sciences, Surat 395 001, Gujarat, India
| | - Nengah Wirajana
- Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran Campus, Kuta-Badung, Bali, Indonesia
| | - Dushyant R Dudhagara
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, 362263 Junagadh, Gujarat, India.
| |
Collapse
|
5
|
Zhou T, Wang J, Todd JD, Zhang XH, Zhang Y. Quorum Sensing Regulates the Production of Methanethiol in Vibrio harveyi. Microorganisms 2023; 12:35. [PMID: 38257862 PMCID: PMC10819757 DOI: 10.3390/microorganisms12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Methanethiol (MeSH) and dimethyl sulfide (DMS) are important volatile organic sulfur compounds involved in atmospheric chemistry and climate regulation. However, little is known about the metabolism of these compounds in the ubiquitous marine vibrios. Here, we investigated MeSH/DMS production and whether these processes were regulated by quorum-sensing (QS) systems in Vibrio harveyi BB120. V. harveyi BB120 exhibited strong MeSH production from methionine (Met) (465 nmol mg total protein-1) and weak DMS production from dimethylsulfoniopropionate (DMSP) cleavage. The homologs of MegL responsible for MeSH production from L-Met widely existed in vibrio genomes. Using BB120 and its nine QS mutants, we found that the MeSH production was regulated by HAI-1, AI-2 and CAI-1 QS pathways, as well as the luxO gene located in the center of this QS cascade. The regulation role of HAI-1 and AI-2 QS systems in MeSH production was further confirmed by applying quorum-quenching enzyme MomL and exogenous autoinducer AI-2. By contrast, the DMS production from DMSP cleavage showed no significant difference between BB120 and its QS mutants. Such QS-regulated MeSH production may help to remove excess Met that can be harmful for vibrio growth. These results emphasize the importance of QS systems and the MeSH production process in vibrios.
Collapse
Affiliation(s)
- Tiantian Zhou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
| | - Jinyan Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (T.Z.); (J.W.); (X.-H.Z.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunhui Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
6
|
Steele AD, Kiefer AF, Shen B. The many facets of sulfur incorporation in natural product biosynthesis. Curr Opin Chem Biol 2023; 76:102366. [PMID: 37451204 PMCID: PMC10527158 DOI: 10.1016/j.cbpa.2023.102366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Sulfur-containing natural products (S-containing NPs) exhibit diverse chemical structures and biosynthetic machineries. Unraveling the intricate chemistry of S-incorporation requires innovative and multidisciplinary approaches. In this review, we surveyed the landscape of S-containing NP biosynthetic machineries, classified the S-incorporation chemistry into four distinct classes, and highlighted each of the four classes with representative examples from recent studies. All highlighted chemistry has been correlated to the genes encoding the biosynthetic machineries of the S-containing NPs, which open new opportunities to discover S-containing NPs through genome mining. These examples should inspire the community to explore uncharted territories in NP research, promoting further advancements in both novel S-containing NP discovery and S-incorporation chemistry.
Collapse
Affiliation(s)
- Andrew D Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States
| | - Alexander F Kiefer
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, United States.
| |
Collapse
|
7
|
Interplay between Sulfur Assimilation and Biodesulfurization Activity in Rhodococcus qingshengii IGTS8: Insights into a Regulatory Role of the Reverse Transsulfuration Pathway. mBio 2022; 13:e0075422. [PMID: 35856606 PMCID: PMC9426449 DOI: 10.1128/mbio.00754-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodesulfurization is a process that selectively removes sulfur from dibenzothiophene and its derivatives. Several natural biocatalysts harboring the highly conserved desulfurization operon dszABC, which is significantly repressed by methionine, cysteine, and inorganic sulfate, have been isolated. However, the available information on the metabolic regulation of gene expression is still limited. In this study, scarless knockouts of the reverse transsulfuration pathway enzyme genes cbs and metB were constructed in the desulfurizing strain Rhodococcus sp. strain IGTS8. We provide sequence analyses and report the enzymes' involvement in the sulfate- and methionine-dependent repression of biodesulfurization activity. Sulfate addition in the bacterial culture did not repress the desulfurization activity of the Δcbs strain, whereas deletion of metB promoted a significant biodesulfurization activity for sulfate-based growth and an even higher desulfurization activity for methionine-grown cells. In contrast, growth on cysteine completely repressed the desulfurization activity of all strains. Transcript level comparison uncovered a positive effect of cbs and metB gene deletions on dsz gene expression in the presence of sulfate and methionine, but not cysteine, offering insights into a critical role of cystathionine β-synthase (CβS) and MetB in desulfurization activity regulation. IMPORTANCE Precise genome editing of the model biocatalyst Rhodococcus qingshengii IGTS8 was performed for the first time, more than 3 decades after its initial discovery. We thus gained insight into the regulation of dsz gene expression and biocatalyst activity, depending on the presence of two reverse transsulfuration enzymes, CβS and MetB. Moreover, we observed an enhancement of biodesulfurization capability in the presence of otherwise repressive sulfur sources, such as sulfate and l-methionine. The interconnection of cellular sulfur assimilation strategies was revealed and validated.
Collapse
|
8
|
Alshehri WA. Bacterium Hafnia alvei secretes l-methioninase enzyme: Optimization of the enzyme secretion conditions. Saudi J Biol Sci 2020; 27:1222-1227. [PMID: 32346328 PMCID: PMC7182987 DOI: 10.1016/j.sjbs.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022] Open
Abstract
I isolated bacteria from blue cheese in order to find bacterial strains secreting l-methioninase enzyme, and optimized the conditions for the most efficient enzyme secretion. The efficient isolate, identified according to the 16S rRNA gene sequence analysis, was Hafnia alvei belonging to Enterobacteriaceae. I confirmed that the H. alvei strain harbored the methionase gene, mdeA (1194 bp). The environmental (pH, temperature) and nutritional (carbon and nitrogen sources and Mg concentration) factors influencing the l-methioninase production of H. alvei were optimized. The highest yield of l-methioninase enzyme was reached after 48 h of incubation when the acidity of the growing medium was adjusted to pH 7.5 and the temperature was 35 °C. The following concentrations of the supplements increased the l-methioninase yield in the medium: galactose (2.0 g L-1), MgSO4 (0.25 g L-1), l-methionine as an inducer (2.0 g L-1), and l-asparagine as an additional N source (1.5 g L-1). I introduce a bacterial strain of H. alvei that is previously unreported to secrete l-methioninase enzyme and show that a carbon source is a mandatory supplement whereas l-methionine is not a mandatory supplement for l-methioninase enzyme production of H. alvei.
Collapse
Affiliation(s)
- Wafa A. Alshehri
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Du YL, Ryan KS. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep 2019; 36:430-457. [DOI: 10.1039/c8np00049b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review reactions catalyzed by pyridoxal phosphate-dependent enzymes, highlighting enzymes reported in the recent natural product biosynthetic literature.
Collapse
Affiliation(s)
- Yi-Ling Du
- Institute of Pharmaceutical Biotechnology
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
10
|
Raboni S, Revtovich S, Demitri N, Giabbai B, Storici P, Cocconcelli C, Faggiano S, Rosini E, Pollegioni L, Galati S, Buschini A, Morozova E, Kulikova V, Nikulin A, Gabellieri E, Cioni P, Demidkina T, Mozzarelli A. Engineering methionine γ-lyase from Citrobacter freundii for anticancer activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1260-1270. [PMID: 30268810 DOI: 10.1016/j.bbapap.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms. Whereas most of the residues in the active site and at the dimer interface were found to be conserved, residues located in the C-terminal flexible loop, forming a wall of the active site entry channel, were found to be variable. Therefore, we carried out site-saturation mutagenesis at four independent positions of the C-terminal flexible loop, P357, V358, P360 and A366 of MGL from Citrobacter freundii, generating libraries that were screened for activity. Among the active variants, V358Y exhibits a 1.9-fold increase in the catalytic rate and a 3-fold increase in KM, resulting in a catalytic efficiency similar to wild type MGL. V358Y cytotoxic activity was assessed towards a panel of cancer and nonmalignant cell lines and found to exhibit IC50 lower than the wild type. The comparison of the 3D-structure of V358Y MGL with other MGL available structures indicates that the C-terminal loop is either in an open or closed conformation that does not depend on the amino acid at position 358. Nevertheless, mutations at this position allosterically affects catalysis.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia.
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
11
|
Suganya K, Govindan K, Prabha P, Murugan M. An extensive review on L-methioninase and its potential applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Sato D, Shiba T, Karaki T, Yamagata W, Nozaki T, Nakazawa T, Harada S. X-Ray snapshots of a pyridoxal enzyme: a catalytic mechanism involving concerted [1,5]-hydrogen sigmatropy in methionine γ-lyase. Sci Rep 2017; 7:4874. [PMID: 28687762 PMCID: PMC5501846 DOI: 10.1038/s41598-017-05032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/19/2017] [Indexed: 11/30/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP)-enzymes are essentially involved in amino acid and amine metabolism of a wide variety of organisms. Despite their extensive biochemical studies, there are little evidence and structural data to comprehensively elaborate the catalytic mechanism. We obtained X-ray snapshots of l-methionine γ-lyase from Entamoeba histolytica (EhMGL), a PLP-enzyme catalyzing the γ-elimination reaction of methionine. Here, we suggest a catalytic mechanism of EhMGL by using the X-ray snapshots covering all stages of this multistep catalysis reaction. Initial formation of a Michaelis complex is followed by the migration of double bond from the C4′=Nα–Cα moiety in an intermediate PLP-methionine imine to C4′–Nα=Cα in pyridoxamine 5′-phosphate (PMP)-α,β-dehydromethionine imine without intervention of a putative quinonoid intermediate. The enzyme can facilitate the subsequent γ-elimination of methanethiol by the possible general acid-base catalysis of Tyr108 for the E1cB mechanism, enabling to form the ene-imine C4′–Nα=Cα–Cβ=Cγ structure with the s-cis conformation, which is prerequisite for the non-enzymatic symmetry-allowed suprafacial [1,5]-hydrogen shift to complete the catalytic cycle by releasing α-ketobutyrate. The mechanism based on the X-ray snapshots is consistent with the reactivity of MGL toward methionine analogues. The generality of such a mechanism involving non-enzymatic concerted reaction in other PLP enzymes is discussed.
Collapse
Affiliation(s)
- Dan Sato
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomoo Shiba
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tsuyoshi Karaki
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Wataru Yamagata
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takashi Nakazawa
- Department of Chemistry, Nara Women's University, Nara, 630-8506, Japan
| | - Shigeharu Harada
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
13
|
Sato D, Shiba T, Yunoto S, Furutani K, Fukumoto M, Kudou D, Tamura T, Inagaki K, Harada S. Structural and mechanistic insights into homocysteine degradation by a mutant of methionine γ-lyase based on substrate-assisted catalysis. Protein Sci 2017; 26:1224-1230. [PMID: 28329912 DOI: 10.1002/pro.3158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023]
Abstract
Methionine γ-lyse (MGL) catalyzes the α, γ-elimination of l-methionine and its derivatives as well as the α, β-elimination of l-cysteine and its derivatives to produce α-keto acids, volatile thiols, and ammonia. The reaction mechanism of MGL has been characterized by enzymological studies using several site-directed mutants. The Pseudomonas putida MGL C116H mutant showed drastically reduced degradation activity toward methionine while retaining activity toward homocysteine. To understand the underlying mechanism and to discern the subtle differences between these substrates, we analyzed the crystal structures of the reaction intermediates. The complex formed between the C116H mutant and methionine demonstrated that a loop structure (Ala51-Asn64) in the adjacent subunit of the catalytic dimer cannot approach the cofactor pyridoxal 5'-phosphate (PLP) because His116 disrupts the interaction of Asp241 with Lys240, and the liberated side chain of Lys240 causes steric hindrance with this loop. Conversely, in the complex formed between C116H mutant and homocysteine, the thiol moiety of the substrate conjugated with PLP offsets the imidazole ring of His116 via a water molecule, disrupting the interaction of His116 and Asp241 and restoring the interaction of Asp241 with Lys240. These structural data suggest that the Cys116 to His mutation renders the enzyme inactive toward the original substrate, but activity is restored when the substrate is homocysteine due to substrate-assisted catalysis.
Collapse
Affiliation(s)
- Dan Sato
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Shunsuke Yunoto
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Kazuo Furutani
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Mitsuki Fukumoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Daizou Kudou
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| |
Collapse
|
14
|
Zhao S, Liu C, Zheng W, Ma Z, Cao T, Zhao J, Yan K, Xiang W, Wang X. Micromonospora parathelypteridis sp. nov., an endophytic actinomycete with antifungal activity isolated from the root of Parathelypteris beddomei (Bak.) Ching. Int J Syst Evol Microbiol 2017; 67:268-274. [PMID: 27902235 DOI: 10.1099/ijsem.0.001614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel endophytic actinomycete with antifungal activity, designated strain NEAU-JXY5T, was isolated from the root of Parathelypteris beddomei (Bak.) Ching. Strain NEAU-JXY5T showed closest 16S rRNA gene sequence similarity to Micromonospora luteifusca GUI2T (99.31 %), and phylogenetically clustered with Micromonospora noduli GUI43T (99.24 %), 'Micromonospora lycii' NEAU-gq11 (99.19 %), 'Micromonospora zeae' NEAU-gq9 (99.12 %), Micromonospora saelicesensis Lupac 09T (98.97 %), Micromonospora vinacea GUI63T (98.96 %), 'Micromonospora jinlongensis' NEAU-GRX11 (98.91 %), Micromonospora profundi DS3010T (98.77 %), Micromonospora zamorensis CR38T (98.76 %), Micromonospora chokoriensis 2-19(6)T (98.71 %), Micromonospora lupini Lupac 14NT (98.69 %), Micromonospora ureilytica GUI23T (98.69 %), Micromonospora violae NEAU-zh8T (98.57 %) and Micromonospora taraxaci NEAU-P5T (98.37 %). Phylogenetic analysis based on gyrB gene sequences also indicated that the isolate clustered with the above strains except M. violae NEAU-zh8T. A combination of DNA-DNA hybridization results and some phenotypic characteristics indicated that the strain could be readily distinguished from these closest phylogenetic relatives. Therefore, it is concluded that strain NEAU-JXY5T represents a novel species of the genus Micromonospora, for which the name Micromonospora parathelypteridis sp. nov. is proposed. The type strain is NEAU-JXY5T (=CGMCC 4.7347T=DSM 103125T).
Collapse
Affiliation(s)
- Shanshan Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Weiwei Zheng
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Zhaoxu Ma
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Tingting Cao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Junwei Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Kai Yan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|
15
|
|
16
|
Cao H, Tan K, Wang F, Bigelow L, Yennamalli RM, Jedrzejczak R, Babnigg G, Bingman CA, Joachimiak A, Kharel MK, Singh S, Thorson JS, Phillips GN. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:034702. [PMID: 27191010 PMCID: PMC4851618 DOI: 10.1063/1.4948539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
CalE6 from Micromonospora echinospora is a (pyridoxal 5' phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation.
Collapse
Affiliation(s)
- Hongnan Cao
- Biosciences at Rice, Rice University , 6100 Main St., Houston, Texas 77005, USA
| | - Kemin Tan
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Fengbin Wang
- Biosciences at Rice, Rice University , 6100 Main St., Houston, Texas 77005, USA
| | - Lance Bigelow
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | | | - Robert Jedrzejczak
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Gyorgy Babnigg
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, USA
| | - Andrzej Joachimiak
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Madan K Kharel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, USA
| | - Shanteri Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, USA
| | - George N Phillips
- Biosciences at Rice, Rice University , 6100 Main St., Houston, Texas 77005, USA
| |
Collapse
|
17
|
Jia KZ, Zhang Q, Sun LY, Xu YH, Li HM, Tang YJ. Clonostachys rosea demethiolase STR3 controls the conversion of methionine into methanethiol. Sci Rep 2016; 6:21920. [PMID: 26902928 PMCID: PMC4763297 DOI: 10.1038/srep21920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 12/01/2022] Open
Abstract
Eukaryote-derived methioninase, catalyzing the one-step degradation of methionine (Met) to methanethiol (MTL), has received much attention for its low immunogenic potential and use as a therapeutic agent against Met-dependent tumors. Although biological and chemical degradation pathways for Met-MTL conversion are proposed, the concrete molecular mechanism for Met-MTL conversion in eukaryotes is still unclear. Previous studies demonstrated that α-keto-methylthiobutyric acid (KMBA), the intermediate for Met-MTL conversion, was located extracellularly and the demethiolase STR3 possessed no activities towards Met, which rule out the possibility of intracellular Met-MTL conversion pathway inside eukaryotes. We report here that degradation of Met resulted in intracellular accumulation of KMBA in Clonostachys rosea. Addition of Met to culture media led to the production of MTL and downregulation of STR3, while incubation of Met with surrogate substrate α-ketoglutaric acid enhanced the synthesis of MTL and triggered the upregulation of STR3. Subsequent biochemical analysis with recombinant STR3 showed that STR3 directly converted both Met and its transamination product KMBA to MTL. These results indicated that STR3 as rate-limiting enzyme degrades Met and KMBA into MTL. Our findings suggest STR3 is a potential target for therapeutic agents against Met-dependent tumors and aging.
Collapse
Affiliation(s)
- Kai-Zhi Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Quan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Lin-Yang Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Yang-Hua Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Hong-Mei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| |
Collapse
|
18
|
Abstract
Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.
Collapse
|
19
|
Bawdon D, Cox DS, Ashford D, James AG, Thomas GH. Identification of axillary Staphylococcus sp. involved in the production of the malodorous thioalcohol 3-methyl-3-sufanylhexan-1-ol. FEMS Microbiol Lett 2015; 362:fnv111. [PMID: 26163522 DOI: 10.1093/femsle/fnv111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/31/2022] Open
Abstract
The production of malodour by humans is mediated by bacterial transformation of naturally secreted, non-odorous molecules. Specifically in the underarm (axilla), malodour arises due to biotransformation by the microbiota of dipeptide-conjugated thioalcohols, particularly S-[1-(2-hydroxyethyl)-1-methylbutyl]-(L)-cysteinylglycine (Cys-Gly-3M3SH). This molecule, secreted by the axilla, has a well-established role in malodour when metabolized to free thioalcohol by bacteria. We present Cys-Gly-3M3SH biotransformation data from a library of skin-isolated corynebacteria and staphylococci and report a significant variation in thioalcohol generation across individual bacterial species. Staphylococcus hominis, Staphylococcus haemolyticus and Staphylococcus lugdunensis were particularly efficient Cys-Gly-3M3SH transformers. In contrast, Staphylococcus epidermidis and Corynebacterium tuberculostearicum, both highly prevalent axillary commensals, are low producers of 3M3SH. We also identify significant differences between the ability of several isolates to biotransform Cys-Gly-3M3SH compared to S-benzyl-L-Cys-Gly, a dipeptide-linked version of a commonly used malodour precursor substrate. Finally, using traditional biochemical assays we subsequently establish that Cys-Gly-3M3SH is actively transported into S. hominis, rather than passively diffusing across the membrane. This work significantly enhances our knowledge of Cys-Gly-3M3SH biotransformation by physiologically important bacteria in the axillary microbiota.
Collapse
Affiliation(s)
- Daniel Bawdon
- Department of Biology (Area 10), University of York, Wentworth Way, York YO10 5DD, UK
| | - Diana S Cox
- Unilever Discover, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK
| | - David Ashford
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - A Gordon James
- Unilever Discover, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|