1
|
Hu Y, Zhou Q, Zhang Z, Pan H, Ilina Y, Metsä‐Ketelä M, Igarashi Y, Tang G. Deciphering the Origin and Formation of Aminopyrrole Moiety in Kosinostatin Biosynthesis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Hu
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS Shanghai 200032 China
| | - Qiang Zhou
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS Shanghai 200032 China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Zhuan Zhang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS Shanghai 200032 China
| | - Hai‐Xue Pan
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub‐lane Xiangshan Hangzhou Zhejiang 310024 China
| | - Yulia Ilina
- Department of Biochemistry University of Turku, Vatselankatu 2, FIN‐20014 Finland
| | - Mikko Metsä‐Ketelä
- Department of Biochemistry University of Turku, Vatselankatu 2, FIN‐20014 Finland
| | - Yasuhiro Igarashi
- Biotechnology Research Center Toyama Prefectural University 5180 Kurokawa, Imizu Toyama 939‐0398 Japan
| | - Gong‐Li Tang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub‐lane Xiangshan Hangzhou Zhejiang 310024 China
| |
Collapse
|
2
|
Dell M, Dunbar KL, Hertweck C. Ribosome-independent peptide biosynthesis: the challenge of a unifying nomenclature. Nat Prod Rep 2021; 39:453-459. [PMID: 34586117 DOI: 10.1039/d1np00019e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first machineries for non-ribosomal peptide (NRP) biosynthesis were uncovered over 50 years ago, and the dissection of these megasynthetases set the stage for the nomenclature system that has been used ever since. Although the number of exceptions to the canonical biosynthetic pathways has surged in the intervening years, the NRP synthetase (NRPS) classification system has remained relatively unchanged. This has led to the exclusion of many biosynthetic pathways whose biosynthetic machineries violate the classical rules for NRP assembly, and ultimately to a rupture in the field of NRP biosynthesis. In an attempt to unify the classification of NRP pathways and to facilitate the communication within the research field, we propose a revised framework for grouping ribosome-independent peptide biosynthetic pathways based on recognizable commonalities in their biosynthetic logic. Importantly, the framework can be further refined as needed.
Collapse
Affiliation(s)
- Maria Dell
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany.
| | - Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany.
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
3
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Aubry C, Clerici P, Gerbaud C, Micouin L, Pernodet JL, Lautru S. Revised Structure of Anthelvencin A and Characterization of the Anthelvencin Biosynthetic Gene Cluster. ACS Chem Biol 2020; 15:945-951. [PMID: 32129986 DOI: 10.1021/acschembio.9b00960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Anthelvencins A and B are pyrrolamide metabolites produced by Streptomyces venezuelae ATCC 14583 and 14585. Isolated in 1965, they were reported to exhibit anthelmintic and moderate antibacterial activities. In this study, we revise the structure of anthelvencin A and identify a third anthelvencin metabolite, bearing two N-methylated pyrrole groups, which we named anthelvencin C. We sequenced the genome of S. venezuelae ATCC 14583 and identified a gene cluster predicted to direct the biosynthesis of anthelvencins. Functional analysis of this gene cluster confirmed its involvement in anthelvencin biosynthesis and allowed us to propose a biosynthetic pathway for anthelvencins. In addition to a nonribosomal peptide synthetase (NRPS), the assembly of anthelvencins involves an enzyme from the ATP-grasp ligase family, Ant23. We propose that Ant23 uses a PCP-loaded 4-aminopyrrole-2-carboxylate as substrate. As observed for the biosynthesis of the other pyrrolamides congocidine (produced by Streptomyces ambofaciens ATCC 25877) and distamycin (produced by Streptomyces netropsis DSM 40846), the NRPS assembling anthelvencins is composed of stand-alone domains only. Such NRPSs, sometimes called type II NRPSs, are less studied than the classical multimodular NRPSs. Yet, they constitute an interesting model to study protein-protein interactions in NRPSs and are good candidates for combinatorial biosynthesis approaches.
Collapse
Affiliation(s)
- Céline Aubry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Paolo Clerici
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, LCBPT, UMR 8601 CNRS, F-75006 Paris, France
| | - Claude Gerbaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Laurent Micouin
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, LCBPT, UMR 8601 CNRS, F-75006 Paris, France
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Sylvie Lautru
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
5
|
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 2020; 37:355-379. [PMID: 31593192 PMCID: PMC7101270 DOI: 10.1039/c9np00047j] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| |
Collapse
|
6
|
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. ACTA ACUST UNITED AC 2019; 46:515-536. [DOI: 10.1007/s10295-018-2084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
Abstract
Nonproteinogenic amino acids are the unique building blocks of nonribosomal peptides (NRPs) and hybrid nonribosomal peptide–polyketides (NRP–PKs) and contribute to their diversity of chemical structures and biological activities. In the biosynthesis of NRPs and NRP–PKs, adenylation enzymes select and activate an amino acid substrate as an aminoacyl adenylate, which reacts with the thiol of the holo form of the carrier protein to afford an aminoacyl thioester as the electrophile for the condensation reaction. Therefore, the substrate specificity of adenylation enzymes is a key determinant of the structure of NRPs and NRP–PKs. Here, we focus on nonproteinogenic amino acid selective adenylation enzymes, because understanding their unique selection mechanisms will lead to accurate functional predictions and protein engineering toward the rational biosynthesis of designed molecules containing amino acids. Based on recent progress in the structural analysis of adenylation enzymes, we discuss the nonribosomal codes of nonproteinogenic amino acid selective adenylation enzymes.
Collapse
|
7
|
Zhu M, Wang L, He J. Chemical Diversification Based on Substrate Promiscuity of a Standalone Adenylation Domain in a Reconstituted NRPS System. ACS Chem Biol 2019; 14:256-265. [PMID: 30673204 DOI: 10.1021/acschembio.8b00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A nonribosomal peptide synthetase (NRPS) assembly line ( sfa) in Streptomyces thioluteus that directs the formation of the diisonitrile chalkophore SF2768 (1) has been characterized by heterologous expression and directed gene knockouts. Herein, differential metabolic analysis of the heterologous expression strain and the original host led to the isolation of an SF2768 analogue (2, a byproduct of sfa) that possesses N-isovaleryl rather than 3-isocyanobutyryl side chains. The proposed biosynthetic logic of sfa and the structural difference between 1 and 2 suggested substrate promiscuity of the adenylate-forming enzyme SfaB. Further substrate scope investigation of SfaB and a successfully reconstituted NRPS system including a four-enzyme cascade enabled incorporation of diverse carboxylic acid building blocks into peptide scaffolds, and 30 unnatural products were thus generated. This structural diversification strategy based on substrate flexibility of the adenylation domain and in vitro reconstitution can be applied to other adenylation-priming pathways, thus providing a supplementary method for diversity-oriented total synthesis. Additionally, the biocatalytic process of the putative lysine δ-hydroxylase SfaE was validated through the derivatization of two key aldehyde intermediates (2a and 2b), thereby expanding the toolkit of enzymatic C-H bond activation.
Collapse
Affiliation(s)
- Mengyi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijuan Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Jing He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Mori S, Shrestha SK, Fernández J, Álvarez San Millán M, Garzan A, Al-Mestarihi AH, Lombó F, Garneau-Tsodikova S. Activation and Loading of the Starter Unit during Thiocoraline Biosynthesis. Biochemistry 2017; 56:4457-4467. [DOI: 10.1021/acs.biochem.7b00661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shogo Mori
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sanjib K. Shrestha
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Javier Fernández
- Departamento
de Biología Funcional e Instituto Universitario de Oncología
del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - María Álvarez San Millán
- Departamento
de Biología Funcional e Instituto Universitario de Oncología
del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - Atefeh Garzan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Ahmad H. Al-Mestarihi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Felipe Lombó
- Departamento
de Biología Funcional e Instituto Universitario de Oncología
del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - Sylvie Garneau-Tsodikova
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
9
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 607] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
10
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
11
|
Miller BR, Drake EJ, Shi C, Aldrich CC, Gulick AM. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture. J Biol Chem 2016; 291:22559-22571. [PMID: 27597544 DOI: 10.1074/jbc.m116.746297] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.
Collapse
Affiliation(s)
- Bradley R Miller
- From the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203.,the Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, and
| | - Eric J Drake
- From the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203.,the Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, and
| | - Ce Shi
- the Center for Drug Design and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Courtney C Aldrich
- the Center for Drug Design and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Andrew M Gulick
- From the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, .,the Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, and
| |
Collapse
|
12
|
Saha S, Rokita SE. An Activator of an Adenylation Domain Revealed by Activity but Not Sequence Homology. Chembiochem 2016; 17:1818-1823. [PMID: 27447757 DOI: 10.1002/cbic.201600291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 11/10/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs), which are responsible for synthesizing many medicinally important natural products, frequently use adenylation domain activators (ADAs) to promote substrate loading. Although ADAs are usually MbtH-like proteins (MLPs), a new type of ADA appears to promote an NRPS-dependent incorporation of a dihydropyrrole unit into sibiromycin. The adenylation and thiolation didomain of the NRPS SibD catalyzes the adenylation of a limited number of amino acids including l-Tyr, the precursor in dihydropyrrole biosynthesis, as determined by a standard radioactivity exchange assay. LC-MS/MS analysis confirmed loading of l-Tyr onto the thiolation domain. SibB, a small protein with no prior functional assignment or sequence homology to MLPs, was found to promote the exchange activity. MLPs from bacteria expressing homologous biosynthetic pathways were unable to replace this function of SibB. The discovery of this new type of ADA demonstrates the importance of searching beyond the conventional MLP standard for proteins affecting NRPS activity.
Collapse
Affiliation(s)
- Shalini Saha
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD, 21218, USA.
| |
Collapse
|
13
|
Shrestha SK, Garneau-Tsodikova S. Expanding Substrate Promiscuity by Engineering a Novel Adenylating-Methylating NRPS Bifunctional Enzyme. Chembiochem 2016; 17:1328-32. [PMID: 27128382 DOI: 10.1002/cbic.201600234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/11/2022]
Abstract
Nonribosomal peptides synthetases (NRPSs), which are multifunctional mega-enzymes producing many biologically active metabolites, are ideal targets for enzyme engineering. NRPS adenylation domains play a critical role in selecting/activating the amino acids to be transferred to downstream NRPS domains in the biosynthesis of natural products. Both monofunctional and bifunctional A domains interrupted with an auxiliary domain are found in nature. Here, we show that a bifunctional interrupted A domain can be uninterrupted by deleting its methyltransferase auxiliary domain portion to make an active monofunctional enzyme. We also demonstrate that a portion of an auxiliary domain with almost no sequence identity to the original auxiliary domain can be insert into naturally interrupted A domain to develop a new active bifunctional A domain with increased substrate profile. This work shows promise for the creation of new interrupted A domains in engineered NRPS enzymes.
Collapse
Affiliation(s)
- Sanjib K Shrestha
- Department of Pharmaceutical Sciences, University of Kentucky, BioPharm Complex (Room 423), 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, BioPharm Complex (Room 423), 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|