1
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Arancillo M, Taechalertpaisarn J, Liang X, Burgess K. Piptides: New, Easily Accessible Chemotypes For Interactions With Biomolecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maritess Arancillo
- Department of Chemistry Texas A & M University Box 30012 College Station TX 77842 USA
| | | | - Xiaowen Liang
- Center for Infectious and Inflammatory Diseases Institute of Biosciences and Technology Texas A&M Health Science Center Houston TX 77030 USA
| | - Kevin Burgess
- Department of Chemistry Texas A & M University Box 30012 College Station TX 77842 USA
| |
Collapse
|
3
|
Arancillo M, Taechalertpaisarn J, Liang X, Burgess K. Piptides: New, Easily Accessible Chemotypes For Interactions With Biomolecules. Angew Chem Int Ed Engl 2021; 60:6653-6659. [PMID: 33319463 PMCID: PMC7940574 DOI: 10.1002/anie.202015203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Small molecule probe development is pivotal in biomolecular science. Research described here was undertaken to develop a non-peptidic chemotype, piptides, that is amenable to convenient, iterative solid-phase syntheses, and useful in biomolecular probe discovery. Piptides can be made from readily accessible pip acid building blocks and have good proteolytic and pH stabilities. An illustrative application of piptides against a protein-protein interaction (PPI) target was explored. The Exploring Key Orientations (EKO) strategy was used to evaluate piptide candidates for this. A library of only 14 piptides contained five members that disrupted epidermal growth factor (EGF) and its receptor, EGFR, at low micromolar concentrations. These piptides also caused apoptotic cell death, and antagonized EGF-induced phosphorylation of intracellular tyrosine residues in EGFR.
Collapse
Affiliation(s)
- Maritess Arancillo
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842, USA
| | - Jaru Taechalertpaisarn
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842, USA
| | - Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842, USA
| |
Collapse
|
4
|
Bartolowits MD, Gast JM, Hasler AJ, Cirrincione AM, O’Connor RJ, Mahmoud AH, Lill MA, Davisson VJ. Discovery of Inhibitors for Proliferating Cell Nuclear Antigen Using a Computational-Based Linked-Multiple-Fragment Screen. ACS OMEGA 2019; 4:15181-15196. [PMID: 31552364 PMCID: PMC6751697 DOI: 10.1021/acsomega.9b02079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a central factor in DNA replication and repair pathways that plays an essential role in genome stability. The functional roles of PCNA are mediated through an extensive list of protein-protein interactions, each of which transmits specific information in protein assemblies. The flexibility at the PCNA-protein interaction interfaces offers opportunities for the discovery of functionally selective inhibitors of DNA repair pathways. Current fragment-based drug design methodologies can be limited by the flexibility of protein interfaces. These factors motivated an approach to defining compounds that could leverage previously identified subpockets on PCNA that are suitable for fragment-binding sites. Methodologies for screening multiple connected fragment-binding events in distinct subpockets are deployed to improve the selection of fragment combinations. A flexible backbone based on N-alkyl-glycine amides offers a scaffold to combinatorically link multiple fragments for in silico screening libraries that explore the diversity of subpockets at protein interfaces. This approach was applied to discover new potential inhibitors of DNA replication and repair that target PCNA in a multiprotein recognition site. The screens of the libraries were designed to computationally filter ligands based upon the fragments and positions to <1%, which were synthesized and tested for direct binding to PCNA. Molecular dynamics simulations also revealed distinct features of these novel molecules that block key PCNA-protein interactions. Furthermore, a Bayesian classifier predicted 15 of the 16 new inhibitors to be modulators of protein-protein interactions, demonstrating the method's utility as an effective screening filter. The cellular activities of example ligands with similar affinity for PCNA demonstrate unique properties for novel selective synergy with therapeutic DNA-damaging agents in drug-resistant contexts.
Collapse
Affiliation(s)
- Matthew D. Bartolowits
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathon M. Gast
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashlee J. Hasler
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anthony M. Cirrincione
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rachel J. O’Connor
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Amr H. Mahmoud
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Markus A. Lill
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vincent Jo Davisson
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Gao H, Zhao Z, He Z, Wang H, Liu M, Hu Z, Cheng O, Yang Y, Zhu L. Detection of Parkinson's Disease through the Peptoid Recognizing α-Synuclein in Serum. ACS Chem Neurosci 2019; 10:1204-1208. [PMID: 30682886 DOI: 10.1021/acschemneuro.8b00540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease and there is great need for developing a biochemical detection method to precisely diagnose it. Alpha-synuclein (α-syn) participates in the main pathology of PD and serves as an important biomarker of PD. Here, we identified peptoid ASBP-7 that had high affinity and specificity to α-syn by screening a peptoid library using the high-throughput surface plasmon resonance imaging method. We confirmed that ASBP-7 could significantly distinguish PD sera from the normal ones through identifying α-syn in the serum. We also demonstrated the high sensitivity of this system in detecting PD serum. This work provides a method for the blood-based, label-free, high-throughput analysis of PD serum, and holds great potential for the early diagnosis and dynamic monitoring of PD.
Collapse
Affiliation(s)
- Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Zhaohui He
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mingzhu Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Oumei Cheng
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| |
Collapse
|
6
|
Koos B, Christmann J, Plettenberg S, Käding D, Becker J, Keteku M, Klein C, Imtiaz S, Janning P, Bastiaens PIH, Wehner F. Hypertonicity-induced cation channels in HepG2 cells: architecture and role in proliferation vs. apoptosis. J Physiol 2018; 596:1227-1241. [PMID: 29369356 DOI: 10.1113/jp275827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Na+ conducting hypertonicity-induced cation channels (HICCs) are key players in the volume restoration of osmotically shrunken cells and, under isotonic conditions, considered as mediators of proliferation - thereby opposing apoptosis. In an siRNA screen of ion channels and transporters in HepG2 cells, with the regulatory volume increase (RVI) as read-out, δENaC, TRPM2 and TRPM5 were identified as HICCs. Subsequently, all permutations of these channels were tested in RVI and patch-clamp recordings and, at first sight, HICCs were found to operate in an independent mode. However, there was synergy in the siRNA perturbations of HICC currents. Accordingly, proximity ligation assays showed that δENaC was located in proximity to TRPM2 and TRPM5 suggesting a physical interaction. Furthermore, δENaC, TRPM2 and TRPM5 were identified as mediators of HepG2 proliferation - their silencing enhanced apoptosis. Our study defines the architecture of HICCs in human hepatocytes as well as their molecular functions. ABSTRACT Hypertonicity-induced cation channels (HICCs) are a substantial element in the regulatory volume increase (RVI) of osmotically shrunken cells. Under isotonic conditions, they are key effectors in the volume gain preceding proliferation; HICC repression, in turn, significantly increases apoptosis rates. Despite these fundamental roles of HICCs in cell physiology, very little is known concerning the actual molecular architecture of these channels. Here, an siRNA screening of putative ion channels and transporters was performed, in HepG2 cells, with the velocity of RVI as the read-out; in this first run, δENaC, TRPM2 and TRPM5 could be identified as HICCs. In the second run, all permutations of these channels were tested in RVI and patch-clamp recordings, with special emphasis on the non-additivity and additivity of siRNAs - which would indicate molecular interactions or independent ways of channel functioning. At first sight, the HICCs in HepG2 cells appeared to operate rather independently. However, a proximity ligation assay revealed that δENaC was located in proximity to both TRPM2 and TRPM5. Furthermore, a clear synergy of HICC current knock-downs (KDs) was observed. δENaC, TRPM2 and TRPM5 were defined as mediators of HepG2 cell proliferation and their silencing increased the rates of apoptosis. This study provides a molecular characterization of the HICCs in human hepatocytes and of their role in RVI, cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Björn Koos
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Jens Christmann
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Sandra Plettenberg
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Domenic Käding
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Julia Becker
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Melody Keteku
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Christian Klein
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Sarah Imtiaz
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Philippe I H Bastiaens
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Frank Wehner
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Zhao Z, Zhu L, Li H, Cheng P, Peng J, Yin Y, Yang Y, Wang C, Hu Z, Yang Y. Antiamyloidogenic Activity of Aβ42-Binding Peptoid in Modulating Amyloid Oligomerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602857. [PMID: 27714968 DOI: 10.1002/smll.201602857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/12/2016] [Indexed: 06/06/2023]
Abstract
The oligomerization and aggregation of amyloid β (Aβ) play central role in the pathogenesis of Alzheimer's disease (AD). Molecular binding agents for modulating the formation of Aβ oligomers and fibrils have promising application potential in AD therapies. By screening a peptoid library using surface plasmon resonance imaging, amyloid inhibitory peptoid 1 (AIP1) that has high affinity to Aβ42 is identified. AIP1 is demonstrated to inhibit Aβ42 oligomerization and fibrillation and to rescue Aβ42-induced cytotoxicity through decreasing the content of Aβ42 oligomers that is related to cell membrane permeability. Molecular docking suggests that the binding sites of AIP1 may be at the N-terminus of Aβ42. The blood-brain barrier (BBB) permeability of AIP1 using an in vitro BBB model is also revealed. This work provides a strategy for the design and development of peptoid-based antiamyloidogenic agents. The obtained amyloid inhibitory peptoid shows prospects in the therapeutic application in AD.
Collapse
Affiliation(s)
- Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Haiyun Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peng Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiaxi Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yudan Yin
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
8
|
Eustache S, Leprince J, Tufféry P. Progress with peptide scanning to study structure-activity relationships: the implications for drug discovery. Expert Opin Drug Discov 2016; 11:771-84. [PMID: 27310575 DOI: 10.1080/17460441.2016.1201058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Peptides have gained renewed interest as candidate therapeutics. However, to bring them to a broader clinical use, challenges such as the rational optimization of their pharmacological properties remain. Peptide scanning techniques offer a systematic framework to gain information on the functional role of individual amino acids of a peptide. Due to progress in mastering new chemical synthesis routes targeting amino acid backbone, they are currently diversified. Structure-activity relationship (SAR) analyses such as alanine- or enantioneric- scanning can now be supplemented by N-substitution, lactam cyclisation- or aza-amino scanning procedures addressing not only SAR considerations but also the peptide pharmacological properties. AREAS COVERED This review highlights the different scanning techniques currently available and illustrates how they can impact drug discovery. EXPERT OPINION Progress in peptide scanning techniques opens new perspectives for peptide drug development. It comes with the promise of a paradigm change in peptide drug design in which peptide drugs will be closer to the parent peptides. However, scanning still remains assimilable to a trial and error strategy that could benefit from being combined with specific in silico approaches that start reaching maturity.
Collapse
Affiliation(s)
- Stéphanie Eustache
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| | - Jérôme Leprince
- b INSERM U982 , Regional Platform for Cell Imaging of Normandy (PRIMACEN), University Rouen-Normandy , Mont-Saint-Aignan, France
| | - Pierre Tufféry
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|