1
|
Mwanza C, Purnamasari M, Back D, Prihatna C, Philmus B, Almabruk KH, Mahmud T, Ye L, Bolton MD, Wu X, Loper JE, Yan Q. Polyyne production is regulated by the transcriptional regulators PgnC and GacA in Pseudomonas protegens Pf-5. Appl Environ Microbiol 2025; 91:e0238824. [PMID: 40178257 PMCID: PMC12016544 DOI: 10.1128/aem.02388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Polyynes produced by bacteria have promising applications in agriculture and medicine due to their potent antimicrobial activities. Polyyne biosynthetic genes have been identified in Pseudomonas and Burkholderia. However, the molecular mechanisms underlying the regulation of polyyne biosynthesis remain largely unknown. In this study, we used a soil bacterium Pseudomonas protegens Pf-5, which was recently reported to produce polyyne called protegenin, as a model to investigate the regulation of bacterial polyyne production. Our results show that Pf-5 controls polyyne production at both the pathway-specific level and a higher global level. Mutation of pgnC, a transcriptional regulatory gene located in the polyyne biosynthetic gene cluster, abolished polyyne production. Gene expression analysis revealed that PgnC directly activates the promoter of polyyne biosynthetic genes. The production of polyyne also requires a global regulator GacA. Mutation of gacA decreased the translation of PgnC, which is consistent with the result that pgnC leader mRNA bound directly to RsmE, an RNA-binding protein negatively regulated by GacA. These results suggest that GacA induces the expression of the PgnC regulator, which in turn activates polyyne biosynthesis. Additionally, the polyyne-producing strain of Pf-5, but not the polyyne-nonproducing strain, could inhibit a broad spectrum of bacteria including both Gram-negative and Gram-positive bacteria.IMPORTANCEAntimicrobial metabolites produced by bacteria are widely used in agriculture and medicine to control plant, animal, and human pathogens. Although bacteria-derived polyynes have been identified as potent antimicrobials for decades, the molecular mechanisms by which bacteria regulate polyyne biosynthesis remain understudied. In this study, we found that polyyne biosynthesis is directly activated by a pathway-specific regulator PgnC, which is induced by a global regulator GacA through the RNA-binding protein RsmE in Pseudomonas protegens. To our knowledge, this work is the first comprehensive study of the regulatory mechanisms of bacterial polyyne biosynthesis at both pathway-specific level and global level. The discovered molecular mechanisms can help us optimize polyyne production for agricultural or medical applications.
Collapse
Affiliation(s)
- Chiseche Mwanza
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Maria Purnamasari
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Daniel Back
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture, Agricultural Research Service, Fargo, North Dakota, USA
| | - Cahya Prihatna
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Khaled H. Almabruk
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Lumeng Ye
- Institute of Molecular Biology and Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Melvin D. Bolton
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture, Agricultural Research Service, Fargo, North Dakota, USA
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, China
| | - Joyce E. Loper
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, Oregon, USA
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Lernoud L, Jakob R, Warnick L, Marx ML, Winand L. Discovery and In Vitro Reconstitution of Closoxazole Biosynthesis from Pyxidicoccus fallax. Chembiochem 2025:e2500126. [PMID: 40215122 DOI: 10.1002/cbic.202500126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Benzoxazoles are important structural components of both bioactive natural products and pharmaceutical active ingredients. In this study, a putative benzoxazole gene cluster originating from the myxobacterium Pyxidicoccus fallax is investigated. This gene cluster is found to confer the ability for production of closoxazoles, which were recently discovered in the anaerobic bacterium Clostridium cavendishii. To obtain further insights into the biosynthetic mechanism, the required key enzymes are subjected to in vitro studies. Notably, significant differences to the biosynthetic pathway in C. cavendishii are observed. First, the condensing amidohydrolase uses an unstable ester as substrate and, thus, establishes a CN bond for benzoxazole formation. In contrast, the homolog from C. cavendishii is thought to use an amide substrate. Second, both AMP ligases encoded in this pathway attach a third aryl carboxylic acid building block to the benzoxazole intermediate, but these enzymes exhibit different regioselectivities. This facilitates the production of closoxazole A and B but also gives access to new derivatives in which a third building block is linked to the phenolic amine of the benzoxazole. The substrate flexibility of these enzymes allows us to introduce other building blocks into the biosynthetic pathway and thus expand the structural diversity of benzoxazole-containing natural products.
Collapse
Affiliation(s)
- Lucia Lernoud
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Rimonda Jakob
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Lars Warnick
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Marie Luisa Marx
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Lea Winand
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Harper CP, Day A, Tsingos M, Ding E, Zeng E, Stumpf SD, Qi Y, Robinson A, Greif J, Blodgett JAV. Critical analysis of polycyclic tetramate macrolactam biosynthetic gene cluster phylogeny and functional diversity. Appl Environ Microbiol 2024; 90:e0060024. [PMID: 38771054 PMCID: PMC11218653 DOI: 10.1128/aem.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.IMPORTANCEPolycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.
Collapse
Affiliation(s)
| | - Anna Day
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maya Tsingos
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Edward Ding
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elizabeth Zeng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Adam Robinson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Greif
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
4
|
Luo LM, Xu H, Zhang N, Ge H, Xiang Y, Yang H, He YX. Pyoluteorin regulates the biosynthesis of 2,4-DAPG through the TetR family transcription factor PhlH in Pseudomonas protegens Pf-5. Appl Environ Microbiol 2024; 90:e0174323. [PMID: 38470180 PMCID: PMC11022555 DOI: 10.1128/aem.01743-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.
Collapse
Affiliation(s)
- Li-Ming Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hang Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- School of Veterinary Medicine and Biosecurity, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Winand L, Lernoud L, Meyners SA, Kuhr K, Hiller W, Nett M. Myxococcus xanthus as Host for the Production of Benzoxazoles. Chembiochem 2023; 24:e202200635. [PMID: 36484355 DOI: 10.1002/cbic.202200635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Benzoxazoles are important structural motifs in pharmaceutical drugs. Here, we present the heterologous production of 3-hydroxyanthranilate-derived benzoxazoles in the host bacterium Myxococcus xanthus following the expression of two genes from the nataxazole biosynthetic gene cluster of Streptomyces sp. Tü 6176. The M. xanthus expression strain achieved a benzoxazole titer of 114.6±7.4 mg L-1 upon precursor supplementation, which is superior to other bacterial production systems. Crosstalk between the heterologously expressed benzoxazole pathway and the endogenous myxochelin pathway led to the combinatorial biosynthesis of benzoxazoles featuring a 2,3-dihydroxybenzoic acid (2,3-DHBA) building block. Subsequent in vitro studies confirmed that this crosstalk is not only due to the availability of 2,3-DHBA in M. xanthus, rather, it is promoted by the adenylating enzyme MxcE from the myxochelin pathway, which contributes to the activation of aryl carboxylic acids and delivers them to benzoxazole biosynthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Lucia Lernoud
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Saskia Anna Meyners
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Katharina Kuhr
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, NMR Laboratory, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| |
Collapse
|
6
|
Deng MR, Chik SY, Li Y, Zhu H. An in-cluster Sfp-type phosphopantetheinyl transferase instead of the holo-ACP synthase activates the granaticin biosynthesis under natural physiological conditions. Front Chem 2022; 10:1112362. [PMID: 36618868 PMCID: PMC9813960 DOI: 10.3389/fchem.2022.1112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial aromatic polyketides are mainly biosynthesized by type II polyketide synthases (PKSs). The PKSs cannot be functional unless their acyl carrier proteins (ACPs) are phosphopantetheinylated by phosphopantetheinyl transferases (PPTases). Gra-ORF32 was identified as an in-cluster PPTase dedicated for granaticin biosynthesis in Streptomyces vietnamensis and the Arg- and Pro-rich N terminus was found to be crucial for catalytic activity. Overexpression of the encoding genes of the holo-ACP synthases of fatty acid synthases (FAS ACPSs) of both E. coli and S. vietnamensis could efficiently activate the production of granaticins in the Δgra-orf32 mutant, suggesting the ACP of granaticin (graACP) is an efficient substrate for FAS ACPSs. However, Gra-ORF32, the cognate PPTase of the graACP, could not compensate the conditional deficiency of ACPS in E. coli HT253, indicating that it has evolved to be functionally segregated from fatty acid biosynthesis. Nine out of eleven endogenous and all the tested exogenous non-cognate PPTases could activate the production of granaticins to varied extents when overexpressed in the Δgra-orf32 mutant, indicating that ACPs of type II PKSs could also be widely recognized as effective substrates by the Sfp-type PPTases. The exogenous PPTases of type II PKSs activated the production of granaticins with much higher efficiency, suggesting that the phylogenetically distant in-cluster PPTases of type II PKSs could share substrate preferences for the ACPs of type II PKSs. A significantly elevated production of granaticins was observed when the mutant Δgra-orf32 was cultivated on ISP2 plates, which was a consequence of crosstalk between the granaticin pathway and a kinamycin-like pathway as revealed by transcriptome analysis and pathway inactivations. Although the host FAS ACPS could efficiently activate the production of granaticins when overexpressed, only Gra-ORF32 activated the efficient production of granaticins under natural physiological conditions, indicating that the activity of the host FAS ACPS was strictly regulated, possibly by binding the FAS holo-ACP product with high affinity. Our findings would contribute to a more comprehensive understanding of how the ACPs of type II PKSs are activated and facilitate the future functional reconstitutions of type II PKSs in E. coli.
Collapse
Affiliation(s)
- Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | | | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Ouyang H, Hong J, Malroy J, Zhu X. An E. coli-Based Biosynthetic Platform Expands the Structural Diversity of Natural Benzoxazoles. ACS Synth Biol 2021; 10:2151-2158. [PMID: 34530615 DOI: 10.1021/acssynbio.1c00228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Benzoxazoles are frequently found in synthetic pharmaceuticals and medicinally active natural products. To facilitate benzoxazole-based drug development, an eco-friendly and rapid platform for benzoxazole production is required. In this study, we have completed the biosynthesis of benzoxazoles in E. coli by coexpressing the minimal set of enzymes required for their biosynthesis. Moreover, by coupling this E. coli-based platform with precursor-directed biosynthesis, we have shown that the benzoxazole biosynthetic system is highly promiscuous in incorporating fluorine, chlorine, nitrile, picolinic, and alkyne functionalities into the scaffold. Our E. coli-based system thus paves the way for straightforward generation of novel benzoxazole analogues through future protein engineering and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Huanrong Ouyang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Joshua Hong
- Department of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Jeshua Malroy
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejun Zhu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Liu D, Yan R, Fu Y, Wang X, Zhang J, Xiang W. Antifungal, Plant Growth-Promoting, and Genomic Properties of an Endophytic Actinobacterium Streptomyces sp. NEAU-S7GS2. Front Microbiol 2019; 10:2077. [PMID: 31551997 PMCID: PMC6746918 DOI: 10.3389/fmicb.2019.02077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022] Open
Abstract
Diseases caused by Sclerotinia sclerotiorum have caused severe losses of many economically important crops worldwide. Due to the long-term persistence of sclerotia in soil and the production of air-borne ascospores, synthetic fungicides play limited roles in controlling the diseases. The application of antagonistic microorganisms can effectively reduce the number of sclerotia and eventually eradicate S. sclerotiorum from soil, and therefore considerable interest has been focused on biological control. Streptomyces sp. NEAU-S7GS2 was isolated from the root of Glycine max and its rhizosphere soil. It showed significant inhibitory activity against the mycelial growth of S. sclerotiorum (99.1%) and completely inhibited sclerotia germination. Compared to the control, in the pot experiment the application of NEAU-S7GS2 not only demonstrated excellent potential to control sclerotinia stem rot of soybean with 77 and 38% decrease in disease incidence and disease index, respectively, but could promote the growth of soybean. The light microscopy and scanning electron microscopy showed that co-culture of NEAU-S7GS2 with S. sclerotiorum on potato dextrose agar could lead to contorted and fragmented mycelia of S. sclerotiorum, which was associated with the secretion of hydrolytic glucanase and cellulase and the production of active secondary metabolites by NEAU-S7GS2. The plant growth promoting activity of NEAU-S7GS2 was related to the solubilization of inorganic phosphate, and production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole acetic acid (IAA). To further explore the plant growth promoting and antifungal mechanisms, the complete genome of strain NEAU-S7GS2 was sequenced. Several genes associated with ammonia assimilation, phosphate solubilization and IAA synthesis, together with genes encoding ACC deaminase, glucanase and α-amylase, were identified. AntiSMASH analysis led to the identification of four gene clusters responsible for the biosynthesis of siderophores including desferrioxamine B and enterobactin. Moreover, the biosynthetic gene clusters of lydicamycins, phenazines, and a glycosylated polyol macrolide showing 88% gene similarity to PM100117/PM100118 were identified. These results suggested that strain NEAU-S7GS2 may be a potential biocontrol agent and biofertilizer used in agriculture.
Collapse
Affiliation(s)
- Dongli Liu
- Heilongjiang Provinical Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China
| | - Rui Yan
- Heilongjiang Provinical Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China
| | - Yansong Fu
- Heilongjiang Provinical Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China
| | - Xiangjing Wang
- Heilongjiang Provinical Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China
| | - Ji Zhang
- Heilongjiang Provinical Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China
| | - Wensheng Xiang
- Heilongjiang Provinical Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Losada AA, Méndez C, Salas JA, Olano C. Exploring the biocombinatorial potential of benzoxazoles: generation of novel caboxamycin derivatives. Microb Cell Fact 2017; 16:93. [PMID: 28545544 PMCID: PMC5445379 DOI: 10.1186/s12934-017-0709-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background The biosynthesis pathway of benzoxazole compounds caboxamycin and nataxazole have been recently elucidated. Both compounds share one of their precursors, 3-hydroxyanthranilate (two units in the case of nataxazole). In addition, caboxamycin structure includes a salicylate moiety while 6-methylsalycilate is the third scaffold in nataxazole. Pathways cross-talk has been identified in caboxamycin producer Streptomyces sp. NTK937, between caboxamycin and enterobactin pathways, and nataxazole producer Streptomyces sp. Tü6176, between nataxazole and coelibactin pathways. These events represent a natural form of combinatorial biosynthesis. Results Eleven novel caboxamycin derivatives, and five putative novel derivatives, bearing distinct substitutions in the aryl ring have been generated. These compounds were produced by heterologous expression of several caboxamycin biosynthesis genes in Streptomyces albus J1074 (two compounds), by combinatorial biosynthesis in Streptomyces sp. NTK937 expressing nataxazole iterative polyketide synthase (two compounds) and by mutasynthesis using a nonproducing mutant of Streptomyces sp. NTK937 (12 compounds). Some of the compounds showed improved bioactive properties in comparison with caboxamycin. Conclusions In addition to the benzoxazoles naturally biosynthesized by the caboxamycin and nataxazole producers, a greater structural diversity can be generated by mutasynthesis and heterologous expression of benzoxazole biosynthesis genes, not only in the respective producer strains but also in non-benzoxazole producers such as S. albus strains. These results show that the production of a wide variety of benzoxazoles could be potentially achieved by the sole expression of cbxBCDE genes (or orthologs thereof), supplying an external source of salicylate-like compounds, or with the concomitant expression of other genes capable of synthesizing salicylates, such as cbxA or natPK. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0709-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Armando A Losada
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Asturias, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Asturias, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Asturias, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
10
|
Losada AA, Cano-Prieto C, García-Salcedo R, Braña AF, Méndez C, Salas JA, Olano C. Caboxamycin biosynthesis pathway and identification of novel benzoxazoles produced by cross-talk in Streptomyces sp. NTK 937. Microb Biotechnol 2017; 10:873-885. [PMID: 28417606 PMCID: PMC5481532 DOI: 10.1111/1751-7915.12716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/01/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Streptomyces sp. NTK937, producer of benzoxazole antibiotic caboxamycin, produces in addition a methyl ester derivative, O‐methylcaboxamycin. Caboxamycin cluster, comprising one regulatory and nine structural genes, has been delimited, and each gene has been individually inactivated to demonstrate its role in the biosynthetic process. The O‐methyltransferase potentially responsible for O‐methylcaboxamycin synthesis would reside outside this cluster. Five of the genes, cbxR, cbxA, cbxB, cbxD and cbxE, encoding a SARP transcriptional regulator, salicylate synthase, 3‐oxoacyl‐ACP‐synthase, ACP and amidohydrolase, respectively, have been found to be essential for caboxamycin biosynthesis. The remaining five structural genes were found to have paralogues distributed throughout the genome, capable of partaking in the process when their cluster homologue is inactivated. Two of such paralogues, cbxC’ and cbxI’, coding an AMP‐dependent synthetase‐ligase and an anthranilate synthase, respectively, have been identified. However, the other three genes might simultaneously have more than one paralogue, given that cbxF (DAHP synthase), cbxG (2,3‐dihydro‐2,3‐dihydroxybenzoate dehydrogenase) and cbxH (isochorismatase) have three, three and five putative paralogue genes, respectively, of similar function within the genome. As a result of genetic manipulation, a novel benzoxazole (3′‐hydroxycaboxamycin) has been identified in the salicylate synthase‐deficient mutant strain ΔcbxA. 3′‐hydroxycaboxamycin derives from the cross‐talk between the caboxamycin and enterobactin pathways.
Collapse
Affiliation(s)
- Armando A Losada
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Carolina Cano-Prieto
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Raúl García-Salcedo
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006, Oviedo, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006, Oviedo, Spain
| |
Collapse
|
11
|
Yan Q, Philmus B, Chang JH, Loper JE. Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. eLife 2017; 6. [PMID: 28262092 PMCID: PMC5395296 DOI: 10.7554/elife.22835] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/16/2017] [Indexed: 12/02/2022] Open
Abstract
Metabolic co-regulation between biosynthetic pathways for secondary metabolites is common in microbes and can play an important role in microbial interactions. Here, we describe a novel mechanism of metabolic co-regulation in which an intermediate in one pathway is converted into signals that activate a second pathway. Our study focused on the co-regulation of 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, two antimicrobial metabolites produced by the soil bacterium Pseudomonas protegens. We show that an intermediate in DAPG biosynthesis, phloroglucinol, is transformed by a halogenase encoded in the pyoluteorin gene cluster into mono- and di-chlorinated phloroglucinols. The chlorinated phloroglucinols function as intra- and inter-cellular signals that induce the expression of pyoluteorin biosynthetic genes, pyoluteorin production, and pyoluteorin-mediated inhibition of the plant-pathogenic bacterium Erwinia amylovora. This metabolic co-regulation provides a strategy for P. protegens to optimize the deployment of secondary metabolites with distinct roles in cooperative and competitive microbial interactions. DOI:http://dx.doi.org/10.7554/eLife.22835.001 Bacteria live almost everywhere on Earth and often compete with one another for limited resources, like space or nutrients. Certain bacteria produce molecules that are toxic to other microorganisms to give themselves a competitive advantage. These toxic molecules are more commonly referred as antibiotics, and are perhaps best known for their importance in medicine. Yet, antibiotics benefit the bacteria that produce them in other ways too. Some bacteria, for example, use antibiotics as chemical signals to communicate with one another and coordinate their activities. Some bacteria produce many antibiotics with different toxic and signaling activities. These bacteria often coordinate the production of different antibiotics such that the production of one antibiotic shuts down the production of another. This kind of coordination would allow the bacterium to focus its energy on producing only the antibiotic that gives it a competitive advantage at that time. Yet, in most cases, it was not known how the bacterial cell coordinates the production of two different antibiotics. Pseudomonas protegens is a species of bacteria that lives in soil, and produces many antibiotics that are toxic to other bacteria or fungi. The antibiotics are made via distinct pathways of chemical reactions that are catalyzed by different enzymes. However, the production of two antibiotics, called 2,4-diacetylphloroglucinol and pyoluteorin, is tightly coordinated in some strains of P. protegens. Now, Yan et al. have discovered how P. protegens coordinates the production of these two antibiotics. It turns out that the bacterium produces an enzyme that adds chlorine atoms onto one of the intermediate building blocks used to make 2,4-diacetylphloroglucinol. These “chlorinated derivatives” then activate the genes required to make the second antibiotic, pyoluteorin. The derivatives also signal to other P. protegens cells and trigger them to produce pyoluteorin too. Lastly, Yan et al. confirmed that pyoluteorin could inhibit the growth of another species of bacteria called Erwinia amylovora. These new findings highlight an important role played by chemicals that might have previously been considered as merely stepping stones in other biochemical reactions. An important challenge for the future will be to evaluate if other microbes use chemical intermediates in similar ways. Understanding the natural role of more antibiotics and their intermediates should help us to more wisely use existing antibiotics, and might eventually lead to new treatments for infections in humans and other animals. DOI:http://dx.doi.org/10.7554/eLife.22835.002
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, United States
| |
Collapse
|