1
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
2
|
Schlüter L, Hansen KØ, Isaksson J, Andersen JH, Hansen EH, Kalinowski J, Schneider YKH. Discovery of thiazostatin D/E using UPLC-HR-MS2-based metabolomics and σ-factor engineering of Actinoplanes sp. SE50/110. Front Bioeng Biotechnol 2024; 12:1497138. [PMID: 39654828 PMCID: PMC11626248 DOI: 10.3389/fbioe.2024.1497138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
As the natural producer of acarbose, Actinoplanes sp. SE50/110 has high industrial relevance. Like most Actinobacteria, the strain carries several more putative biosynthetic gene clusters (BGCs) to produce further natural products, which are to be discovered. Applying a metabolomics-guided approach, we tentatively identified five further compounds that are produced by the strain: watasemycin, thiazostatin, isopyochelin, pulicatin, and aerugine. A comparison of the genomic context allowed the identification of the putative BGC, which is highly similar to the watasemycin biosynthetic gene cluster of Streptomyces venezuelae. In addition to the identified molecules, a thiazostatin-like compound was found. Isolation and structure elucidation with 1D and 2D NMR and HRMS were applied. The fraction containing m/z 369.0929 [M + H]+ comprised two highly similar compounds identified as thiazostatin D and thiazostatin E. The compounds possessed the same phenol-thiazole-thiazole molecular scaffold as the previously reported thiazostatin and watasemycin and have anti-proliferative activity against the breast adenocarcinoma cell line MCF7 and human melanoma cell line A2058, while no activity again the non-malignant immortalized fibroblast cell line MRC-5 was observed. We further showed that the manipulation of global transcriptional regulators, with sigH (ACSP50_0507) and anti-anti-σ factor coding ACSP50_0284 as an example, enabled the production manipulation of the 2-hydroxyphenylthiazoline family molecules. While the manipulation of sigH enabled the shift in the peak intensities between the five products of this pathway, ACSP50_0284 manipulation prevented their production. The production of a highly polar compound with m/z 462.1643 [M + H]+ and calculated elemental composition C19H27NO12 was activated under the ACSP50_0284 expression and is exclusively produced by the engineered strain.
Collapse
Affiliation(s)
- Laura Schlüter
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kine Østnes Hansen
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jeanette Hammer Andersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Espen Holst Hansen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
3
|
Prado-Alonso L, Ye S, Pérez-Victoria I, Montero I, Riesco P, Ortiz-López FJ, Martín J, Olano C, Reyes F, Méndez C. Genome Mining for Diazo-Synthesis-Related Genes in Streptomyces sp. CS057 Unveiled the Cryptic Biosynthetic Gene Cluster crx for the Novel 3,4-AHBA-Derived Compound Crexazone 2. Biomolecules 2024; 14:1084. [PMID: 39334851 PMCID: PMC11429834 DOI: 10.3390/biom14091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Natural products play a crucial role in drug development, addressing the escalating microbial resistance to antibiotics and the treatment of emerging diseases. Progress in genome sequencing techniques, coupled with the development of bioinformatics tools and the exploration of uncharted habitats, has highlighted the biosynthetic potential of actinomycetes. By in silico screening for diazo-related gene genomes from twelve Streptomyces strains isolated from Attini leaf-cutting ants, the new crx biosynthetic gene cluster (BGC) was identified in Streptomyces sp. CS057. This cluster, highly conserved in several Streptomyces strains, contains genes related to diazo group formation and genes for the biosynthesis of 3,4-AHBA. By overexpressing the LuxR-like regulatory gene crxR1, we were able to activate the crx cluster, which encodes the biosynthesis of three 3,4-AHBA-derived compounds that we named crexazones (CRXs). The chemical structure of crexazones (CRXs) was determined by LC-DAD-HRMS-based dereplication and NMR spectroscopic analyses and was found to correspond to two known compounds, 3-acetamido-4-hydroxybenzoic acid (CRX1) and the phenoxazinone texazone (CRX3), and a novel 3,4-AHBA-containing compound herein designated as CRX2. Experimental proof linking the crx BGC to their encoded compounds was achieved by generating mutants in selected crx genes.
Collapse
Affiliation(s)
- Laura Prado-Alonso
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granda, Spain
| | - Ignacio Montero
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pedro Riesco
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Javier Ortiz-López
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granda, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granda, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granda, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
4
|
Johnson SB, Valentino H, Sobrado P. Kinetic Characterization and Identification of Key Active Site Residues of the L-Aspartate N-Hydroxylase, CreE. Chembiochem 2024; 25:e202400350. [PMID: 38775737 DOI: 10.1002/cbic.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Indexed: 07/04/2024]
Abstract
CreE is a flavin-dependent monooxygenase (FMO) that catalyzes three sequential nitrogen oxidation reactions of L-aspartate to produce nitrosuccinate, contributing to the biosynthesis of the antimicrobial and antiproliferative nautral product, cremeomycin. This compound contains a highly reactive diazo functional group for which the reaction of CreE is essential to its formation. Nitro and diazo functional groups can serve as potent electrophiles, important in some challenging nucleophilic addition reactions. Formation of these reactive groups positions CreE as a promising candidate for biomedical and synthetic applications. Here, we present the catalytic mechanism of CreE and the identification of active site residues critical to binding L-aspartate, aiding in future enzyme engineering efforts. Steady-state analysis demonstrated that CreE is very specific for NADPH over NADH and performs a highly coupled reaction with L-aspartate. Analysis of the rapid-reaction kinetics showed that flavin reduction is very fast, along with the formation of the oxygenating species, the C4a-hydroperoxyflavin. The slowest step observed was the dehydration of the flavin. Structural analysis and site-directed mutagenesis implicated T65, R291, and R440 in the binding L-aspartate. The data presented describes the catalytic mechanism and the active site architecture of this unique FMO.
Collapse
Affiliation(s)
- Sydney B Johnson
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Hannah Valentino
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409
| |
Collapse
|
5
|
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Hu J, Wan K, Deng X, Liu X, Fang Y, Zhou F, Yu J, Chi R, Xiao C. Metagenomic analysis revealed the evolution of microbial communities, metabolic pathways, and functional genes in the heterotrophic nitrification-aerobic denitrification process under La 3+ stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169243. [PMID: 38101649 DOI: 10.1016/j.scitotenv.2023.169243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Trivalent lanthanum (La3+) exists widely in ammonia nitrogen (NH4+-N) tailing water from ionic rare earth mines; however, its effect on heterotrophic nitrification-aerobic denitrification (HN-AD) is unknown, thereby limiting the application of the HN-AD process in this field. In this study, we conducted an HN-AD process using a sequencing batch reactor (5 L) that was continuously operated to directly treat acidic (NH4)2SO4 wastewater (influent NH4+-N concentration of approximately 110 mg/L and influent pH of 5) containing different La3+ concentrations (0-100 mg/L). The NH4+-N removal efficiency of the reactor reached 98.25 % at a La3+ concentration of 100 mg/L. The reactor was in a neutral-to-alkaline environment, which favored La3+ precipitation and complexation. Metagenomic analysis revealed that the relative abundance of Thauera in the reactor remained high (88.62-92.27 %) under La3+ stress. The relative abundances of Pannonobacter and Hyphomonas significantly increased, whereas that of Azoarcus significantly decreased. Metabolic functions in the reactor were mainly contributed by Thauera, and the abundance of metabolic functions under low La3+ stress (≤5 mg/L) significantly differed from that under high La3+ stress (≥10 mg/L). The relative abundance of ammonia assimilation-related genes in the reactor was high and significantly correlated with ammonia removal. However, traditional ammonia oxidation genes were not annotated, and unknown ammonia oxidation pathways may have been present in the reactor. Moreover, La3+ stimulated amino acid biosynthesis and translocation, the citrate cycle, sulfur metabolism, and oxidative phosphorylation and promoted the overproduction of extracellular polymeric substances, which underwent complexation and adsorbed La3+ to reduce its toxicity. Our results showed that the HN-AD process had a strong tolerance to La3+, stable NH4+-N removal efficiency, the potential to recover La3+, and considerable application prospects in treating NH4+-N tailing water from ionic rare earth mines.
Collapse
Affiliation(s)
- Jingang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kai Wan
- Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Xiangyi Deng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xuemei Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Fang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China.
| |
Collapse
|
7
|
Van Cura D, Ng TL, Huang J, Hager H, Hartwig JF, Keasling JD, Balskus EP. Discovery of the Azaserine Biosynthetic Pathway Uncovers a Biological Route for α-Diazoester Production. Angew Chem Int Ed Engl 2023; 62:e202304646. [PMID: 37151182 PMCID: PMC10330308 DOI: 10.1002/anie.202304646] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Azaserine is a bacterial metabolite containing a biologically unusual and synthetically enabling α-diazoester functional group. Herein, we report the discovery of the azaserine (aza) biosynthetic gene cluster from Glycomyces harbinensis. Discovery of related gene clusters reveals previously unappreciated azaserine producers, and heterologous expression of the aza gene cluster confirms its role in azaserine assembly. Notably, this gene cluster encodes homologues of hydrazonoacetic acid (HYAA)-producing enzymes, implicating HYAA in α-diazoester biosynthesis. Isotope feeding and biochemical experiments support this hypothesis. These discoveries indicate that a 2-electron oxidation of a hydrazonoacetyl intermediate is required for α-diazoester formation, constituting a distinct logic for diazo biosynthesis. Uncovering this biological route for α-diazoester synthesis now enables the production of a highly versatile carbene precursor in cells, facilitating approaches for engineering complete carbene-mediated biosynthetic transformations in vivo.
Collapse
Affiliation(s)
- Devon Van Cura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Tai L Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jing Huang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Harry Hager
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institute for Advanced Technologies, Shenzhen, China
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
8
|
Ye S, Molloy B, Pérez-Victoria I, Montero I, Braña AF, Olano C, Arca S, Martín J, Reyes F, Salas JA, Méndez C. Uncovering the Cryptic Gene Cluster ahb for 3-amino-4-hydroxybenzoate Derived Ahbamycins, by Searching SARP Regulator Encoding Genes in the Streptomyces argillaceus Genome. Int J Mol Sci 2023; 24:ijms24098197. [PMID: 37175904 PMCID: PMC10179220 DOI: 10.3390/ijms24098197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Genome mining using standard bioinformatics tools has allowed for the uncovering of hidden biosynthesis gene clusters for specialized metabolites in Streptomyces genomes. In this work, we have used an alternative approach consisting in seeking "Streptomyces Antibiotic Regulatory Proteins" (SARP) encoding genes and analyzing their surrounding DNA region to unearth cryptic gene clusters that cannot be identified using standard bioinformatics tools. This strategy has allowed the unveiling of the new ahb cluster in Streptomyces argillaceus, which had not been retrieved before using antiSMASH. The ahb cluster is highly preserved in other Streptomyces strains, which suggests a role for their encoding compounds in specific environmental conditions. By combining overexpression of three regulatory genes and generation of different mutants, we were able to activate the ahb cluster, and to identify and chemically characterize the encoded compounds that we have named ahbamycins (AHBs). These constitute a new family of metabolites derived from 3-amino-4-hydroxybenzoate (3,4-AHBA) known for having antibiotic and antitumor activity. Additionally, by overexpressing three genes of the cluster (ahbH, ahbI, and ahbL2) for the synthesis and activation of 3,4-AHBA, a new hybrid compound, AHB18, was identified which had been produced from a metabolic crosstalk between the AHB and the argimycin P pathways. The identification of this new BGC opens the possibility to generate new compounds by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Brian Molloy
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - Ignacio Montero
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Sonia Arca
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
9
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
10
|
Ma GL, Candra H, Pang LM, Xiong J, Ding Y, Tran HT, Low ZJ, Ye H, Liu M, Zheng J, Fang M, Cao B, Liang ZX. Biosynthesis of Tasikamides via Pathway Coupling and Diazonium-Mediated Hydrazone Formation. J Am Chem Soc 2022; 144:1622-1633. [DOI: 10.1021/jacs.1c10369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yichen Ding
- Temasek Life Sciences Laboratory Limited, Research Link, National University of Singapore, 117604 Singapore
| | - Hoa Thi Tran
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Jie Zheng
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
11
|
Albuquerque P, Ribeiro I, Correia S, Mucha AP, Tamagnini P, Braga-Henriques A, Carvalho MDF, Mendes MV. Complete Genome Sequence of Two Deep-Sea Streptomyces Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential. Mar Drugs 2021; 19:md19110621. [PMID: 34822492 PMCID: PMC8622039 DOI: 10.3390/md19110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
The deep-sea constitutes a true unexplored frontier and a potential source of innovative drug scaffolds. Here, we present the genome sequence of two novel marine actinobacterial strains, MA3_2.13 and S07_1.15, isolated from deep-sea samples (sediments and sponge) and collected at Madeira archipelago (NE Atlantic Ocean; Portugal). The de novo assembly of both genomes was achieved using a hybrid strategy that combines short-reads (Illumina) and long-reads (PacBio) sequencing data. Phylogenetic analyses showed that strain MA3_2.13 is a new species of the Streptomyces genus, whereas strain S07_1.15 is closely related to the type strain of Streptomyces xinghaiensis. In silico analysis revealed that the total length of predicted biosynthetic gene clusters (BGCs) accounted for a high percentage of the MA3_2.13 genome, with several potential new metabolites identified. Strain S07_1.15 had, with a few exceptions, a predicted metabolic profile similar to S. xinghaiensis. In this work, we implemented a straightforward approach for generating high-quality genomes of new bacterial isolates and analyse in silico their potential to produce novel NPs. The inclusion of these in silico dereplication steps allows to minimize the rediscovery rates of traditional natural products screening methodologies and expedite the drug discovery process.
Collapse
Affiliation(s)
- Pedro Albuquerque
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Inês Ribeiro
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Correia
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
| | - Ana Paula Mucha
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Andreia Braga-Henriques
- OOM—Oceanic Observatory of Madeira & MARE—Marine and Environmental Sciences Centre, ARDITI—Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Caminho da Penteada, 9020-105 Funchal, Portugal;
- Regional Directorate for Fisheries, Regional Secretariat for the Sea and Fisheries, Government of the Azores, Rua Cônsul Dabney—Colónia Alemã, 9900-014 Horta, Portugal
| | - Maria de Fátima Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marta V. Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
12
|
Valentino H, Sobrado P. Characterization of a Nitro-Forming Enzyme Involved in Fosfazinomycin Biosynthesis. Biochemistry 2021; 60:2851-2864. [PMID: 34516102 DOI: 10.1021/acs.biochem.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-hydroxylating monooxygenases (NMOs) are a subclass of flavin-dependent enzymes that hydroxylate nitrogen atoms. Recently, unique NMOs that perform multiple reactions on one substrate molecule have been identified. Fosfazinomycin M (FzmM) is one such NMO, forming nitrosuccinate from aspartate (Asp) in the fosfazinomycin biosynthetic pathway in some Streptomyces sp. This work details the biochemical and kinetic analysis of FzmM. Steady-state kinetic investigation shows that FzmM performs a coupled reaction with Asp (kcat, 3.0 ± 0.01 s-1) forming nitrosuccinate, which can be converted to fumarate and nitrite by the action of FzmL. FzmM displays a 70-fold higher kcat/KM value for NADPH compared to NADH and has a narrow optimal pH range (7.5-8.0). Contrary to other NMOs where the kred is rate-limiting, FzmM exhibits a very fast kred (50 ± 0.01 s-1 at 4 °C) with NADPH. NADPH binds at a KD value of ∼400 μM, and hydride transfer occurs with pro-R stereochemistry. Oxidation of FzmM in the absence of Asp exhibits a spectrum with a shoulder at ∼370 nm, consistent with the formation of a C(4a)-hydroperoxyflavin intermediate, which decays into oxidized flavin and hydrogen peroxide at a rate 100-fold slower than the kcat. This reaction is enhanced in the presence of Asp with a slightly faster kox than the kcat, suggesting that flavin dehydration or Asp oxidation is partially rate limiting. Multiple sequence analyses of FzmM to NMOs identified conserved residues involved in flavin binding but not for NADPH. Additional sequence analysis to related monooxygenases suggests that FzmM shares sequence motifs absent in other NMOs.
Collapse
Affiliation(s)
- Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
13
|
Abstract
![]()
The genomic era has dramatically changed how we discover and investigate
microbial biochemistry. In particular, the exponential expansion in
the number of sequenced microbial genomes provides investigators with
a vast wealth of sequence data to exploit for the discovery of biochemical
functions and mechanisms, as well as novel enzymes and metabolites.
In contrast to early biochemical work, which was largely characterized
by “forward” approaches that proceed from biomass to
enzyme to gene, the availability of genome sequences enables the discovery
of new microbial metabolic activities, enzymes, and metabolites by
“reverse” approaches that originate with genetic information
or by approaches that incorporate features of both forward and reverse
methodologies. In the genomic era, the canonical organization of microbial
genomes into gene clusters presents a singular opportunity for the
utilization of genomic data. Specifically, genomic context (information
gleaned from the genes surrounding a gene of interest in the chromosome)
is a powerful tool for chemical discovery in microbial systems because
of the functional and/or physiological relationship that usually exists
between genes found within a gene cluster. This means that the investigator
can use this inferred link to generate hypotheses about the functions
of individual genes in the cluster or even the function of the entire
cluster itself. Here, we discuss how analysis of genomic context in
combination with a mechanistic understanding of enzymes can facilitate
numerous facets of microbial biochemical research including the identification
of biosynthetic gene clusters, the discovery of important and novel
enzymes, the elucidation of natural product structures, and the identification
of new metabolic pathways. We highlight work from our laboratory using
genomic context to discover and study biosynthetic pathways that produce
natural products, including the cylindrocyclophanes, nitrogen–nitrogen
bond-containing metabolites, and the gut microbial genotoxin colibactin.
Although use of genomic context is most commonly associated with studies
of natural product biosynthesis, we also show that it can be applied
to the study of primary metabolism. We illustrate this with examples
from our work studying the members of the glycyl radical enzyme superfamily
involved in choline and 4-hydroxyproline degradation in the human
gut. Looking forward, we envision increased opportunities to use such
information, with the combination of biochemical knowledge and computational
tools poised to fuel a new revolution in our ability to connect genes
and their biochemical functions. In particular, we note a need for
methods that computationally formalize the functional association
between genes when such associations are not obvious from manual gene
annotations. Such tools will drastically augment the feasibility and
scope of gene cluster analysis and accelerate the discovery of new
microbial enzymes, metabolites, and metabolic processes.
Collapse
Affiliation(s)
- Duncan J. Kountz
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Kawai S, Sugaya Y, Hagihara R, Tomita H, Katsuyama Y, Ohnishi Y. Complete Biosynthetic Pathway of Alazopeptin, a Tripeptide Consisting of Two Molecules of 6-Diazo-5-oxo-l-norleucine and One Molecule of Alanine. Angew Chem Int Ed Engl 2021; 60:10319-10325. [PMID: 33624374 DOI: 10.1002/anie.202100462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/06/2022]
Abstract
DON (6-diazo-5-oxo-l-norleucine), a diazo-containing amino acid, has been studied for more than 60 years as a potent antitumor agent, but its biosynthesis has not been elucidated. Here we reveal the complete biosynthetic pathway of alazopeptin, the tripeptide Ala-DON-DON, which has antitumor activity, by gene inactivation and in vitro analysis of recombinant enzymes. We also established heterologous production of N-acetyl-DON in Streptomyces albus. DON is synthesized from lysine by three enzymes and converted to alazopeptin by five enzymes and one carrier protein. Most interestingly, transmembrane protein AzpL was indicated to catalyze diazotization using 5-oxolysine and nitrous acid as substrates. Site-directed mutagenesis of AzpL indicated that the hydroxy group of Tyr-93 is important for the diazotization. These findings expand our knowledge of the enzymology of N-N bond formation.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuko Sugaya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryota Hagihara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroya Tomita
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
15
|
Kawai S, Sugaya Y, Hagihara R, Tomita H, Katsuyama Y, Ohnishi Y. Complete Biosynthetic Pathway of Alazopeptin, a Tripeptide Consisting of Two Molecules of 6‐Diazo‐5‐oxo‐
l
‐norleucine and One Molecule of Alanine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yuko Sugaya
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Ryota Hagihara
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hiroya Tomita
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
16
|
Chen L, Deng Z, Zhao C. Nitrogen-Nitrogen Bond Formation Reactions Involved in Natural Product Biosynthesis. ACS Chem Biol 2021; 16:559-570. [PMID: 33721494 DOI: 10.1021/acschembio.1c00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Construction of nitrogen-nitrogen bonds involves sophisticated biosynthetic mechanisms to overcome the difficulties inherent to the nucleophilic nitrogen atom of amine. Over the past decade, a multitude of reactions responsible for nitrogen-nitrogen bond formation in natural product biosynthesis have been uncovered. On the basis of the intrinsic properties of these reactions, this Review classifies these reactions into three categories: comproportionation, rearrangement, and radical recombination reactions. To expound the metallobiochemistry underlying nitrogen-nitrogen bond formation reactions, we discuss the enzymatic mechanisms in comparison to well characterized canonical heme-dependent enzymes, mononuclear nonheme iron-dependent enzymes, and nonheme di-iron enzymes. We also illuminate the intermediary properties of nitrogen oxide species NO2-, NO+, and N2O3 in nitrogen-nitrogen bond formation reactions with clues derived from inorganic nitrogen metabolism driven by anammox bacteria and nitrifying bacteria. These multidimentional discussions will provide further insights into the mechanistic proposals of nitrogen-nitrogen bond formation in natural product biosynthesis.
Collapse
Affiliation(s)
- Linyue Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| |
Collapse
|
17
|
Hou F, Wan Y, Gan Q, Xian M, Huang W. Identification of 8-Azaguanine Biosynthesis-Related Genes Provides Insight Into the Enzymatic and Non-enzymatic Biosynthetic Pathway for 1,2,3-Triazole. Front Bioeng Biotechnol 2020; 8:603514. [PMID: 33251204 PMCID: PMC7674941 DOI: 10.3389/fbioe.2020.603514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/14/2020] [Indexed: 12/02/2022] Open
Abstract
8-Azaguanine (1) is a special 1,2,3-triazole containing natural product that possesses potent antibacterial and antitumor activities. In the present study, the entire 8-azaguanine biosynthetic gene cluster was located from Streptomyces CGMCC4.1633. Targeted gene disruption, heterologous expression analysis, and feeding experiments identified crucial genes for 8-azaguanine production. Moreover, we characterized the structure of two novel metabolites, analyzed NO (or reactive nitrogen species) related genes 8-azgA/B and radical SAM enzyme homologous 8-AzgG, and verified the non-enzymatic ring formation reaction of 8-azaguanine 1,2,3-triazole. All of the data and presumptions provide insight into the timing and mechanism of the enzymatic and non-enzymatic pathway that produce 8-azaguanine-type 1,2,3-triazole.
Collapse
Affiliation(s)
- Feifei Hou
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Department of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Department of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Gan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Huang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
18
|
Heterologous biosynthesis as a platform for producing new generation natural products. Curr Opin Biotechnol 2020; 66:123-130. [DOI: 10.1016/j.copbio.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
|
19
|
Katsuyama Y, Matsuda K. Recent advance in the biosynthesis of nitrogen–nitrogen bond–containing natural products. Curr Opin Chem Biol 2020; 59:62-68. [DOI: 10.1016/j.cbpa.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
|
20
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
21
|
Sieber S, Daeppen C, Jenul C, Mannancherril V, Eberl L, Gademann K. Biosynthesis and Structure–Activity Relationship Investigations of the Diazeniumdiolate Antifungal Agent Fragin. Chembiochem 2020; 21:1587-1592. [DOI: 10.1002/cbic.201900755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Sieber
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christophe Daeppen
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christian Jenul
- Institute of Plant BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Vidya Mannancherril
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Leo Eberl
- Institute of Plant BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Karl Gademann
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
22
|
Ng TL, McCallum ME, Zheng CR, Wang JX, Wu KJY, Balskus EP. The l-Alanosine Gene Cluster Encodes a Pathway for Diazeniumdiolate Biosynthesis. Chembiochem 2019; 21:1155-1160. [PMID: 31643127 DOI: 10.1002/cbic.201900565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/29/2022]
Abstract
N-Nitroso-containing natural products are bioactive metabolites with antibacterial and anticancer properties. In particular, compounds containing the diazeniumdiolate (N-nitrosohydroxylamine) group display a wide range of bioactivities ranging from cytotoxicity to metal chelation. Despite the importance of this structural motif, knowledge of its biosynthesis is limited. Herein we describe the discovery of a biosynthetic gene cluster in Streptomyces alanosinicus ATCC 15710 responsible for producing the diazeniumdiolate natural product l-alanosine. Gene disruption and stable isotope feeding experiments identified essential biosynthetic genes and revealed the source of the N-nitroso group. Additional biochemical characterization of the biosynthetic enzymes revealed that the non-proteinogenic amino acid l-2,3-diaminopropionic acid (l-Dap) is synthesized and loaded onto a free-standing peptidyl carrier protein (PCP) domain in l-alanosine biosynthesis, which we propose may be a mechanism of handling unstable intermediates generated en route to the diazeniumdiolate. These discoveries will facilitate efforts to determine the biochemistry of diazeniumdiolate formation.
Collapse
Affiliation(s)
- Tai L Ng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Monica E McCallum
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Christine R Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Jennifer X Wang
- Small Molecule Mass Spectrometry Facility, Faculty of Arts and Sciences Division of Science, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Kelvin J Y Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
23
|
Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains. Appl Microbiol Biotechnol 2019; 104:817-831. [DOI: 10.1007/s00253-019-10131-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 02/04/2023]
|
24
|
Twigg FF, Cai W, Huang W, Liu J, Sato M, Perez TJ, Geng J, Dror MJ, Montanez I, Tong TL, Lee H, Zhang W. Identifying the Biosynthetic Gene Cluster for Triacsins with an N-Hydroxytriazene Moiety. Chembiochem 2019; 20:1145-1149. [PMID: 30589194 PMCID: PMC6590916 DOI: 10.1002/cbic.201800762] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/05/2022]
Abstract
Triacsins are a family of natural products having in common an N-hydroxytriazene moiety not found in any other known secondary metabolites. Though many studies have examined the biological activity of triacsins in lipid metabolism, their biosynthesis has remained unknown. Here we report the identification of the triacsin biosynthetic gene cluster in Streptomyces aureofaciens ATCC 31442. Bioinformatic analysis of the gene cluster led to the discovery of the tacrolimus producer Streptomyces tsukubaensis NRRL 18488 as a new triacsin producer. In addition to targeted gene disruption to identify necessary genes for triacsin production, stable isotope feeding was performed in vivo to advance the understanding of N-hydroxytriazene biosynthesis.
Collapse
Affiliation(s)
- Frederick F Twigg
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wei Huang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Joyce Liu
- Department of Bioengineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Michio Sato
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Tynan J Perez
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Jiaxin Geng
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94704, USA
| | - Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Ismael Montanez
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Tate L Tong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Hyunsu Lee
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
- Chan Zuckerberg Biohub, 499 Illinois St., San Francisco, CA, 94158, USA
| |
Collapse
|
25
|
Caranto JD. The emergence of nitric oxide in the biosynthesis of bacterial natural products. Curr Opin Chem Biol 2019; 49:130-138. [DOI: 10.1016/j.cbpa.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
|
26
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
27
|
Matsuda K, Tomita T, Shin-ya K, Wakimoto T, Kuzuyama T, Nishiyama M. Discovery of Unprecedented Hydrazine-Forming Machinery in Bacteria. J Am Chem Soc 2018; 140:9083-9086. [DOI: 10.1021/jacs.8b05354] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kenichi Matsuda
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuo Shin-ya
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
Waldman AJ, Balskus EP. Discovery of a Diazo-Forming Enzyme in Cremeomycin Biosynthesis. J Org Chem 2018; 83:7539-7546. [PMID: 29771512 DOI: 10.1021/acs.joc.8b00367] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The molecular architectures and potent bioactivities of diazo-containing natural products have attracted the interest of synthetic and biological chemists. Despite this attention, the biosynthetic enzymes involved in diazo group construction have not been identified. Here, we show that the ATP-dependent enzyme CreM installs the diazo group in cremeomycin via late-stage N-N bond formation using nitrite. This finding should inspire efforts to use diazo-forming enzymes in biocatalysis and synthetic biology as well as enable genome-based discovery of new diazo-containing metabolites.
Collapse
Affiliation(s)
- Abraham J Waldman
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford St , Cambridge , Massachusetts 02138 , United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford St , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
29
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
30
|
Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces Species. Front Microbiol 2017; 8:394. [PMID: 28360891 PMCID: PMC5350119 DOI: 10.3389/fmicb.2017.00394] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Hye-Rim Pyeon
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Seung-Hoon Kang
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Si-Sun Choi
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University Incheon, South Korea
| |
Collapse
|
31
|
Abstract
Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.
Collapse
Affiliation(s)
- Kalie A. Mix
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Matthew R. Aronoff
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Abstract
Inactivation of ptmB1, ptmB2, ptmT2, or ptmC in Streptomyces platensis SB12029, a platensimycin (PTM) and platencin (PTN) overproducer, revealed that PTM and PTN biosynthesis features two distinct moieties that are individually constructed and convergently coupled to afford PTM and PTN. A focused library of PTM and PTN analogues was generated by mutasynthesis in the ΔptmB1 mutant S. platensis SB12032. Of the 34 aryl variants tested, 18 were incorporated with high titers.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
33
|
Abstract
The biosynthetic origin of a unique hydrazide moiety in the phosphonate natural product fosfazinomycin is investigated.
The biosynthetic origin of a unique hydrazide moiety in the phosphonate natural product fosfazinomycin is unknown. This study presents the activities of five proteins encoded in its gene cluster. The flavin-dependent oxygenase FzmM catalyses the oxidation of l-Asp to N-hydroxy-Asp. When FzmL is added, fumarate is produced in addition to nitrous acid. The adenylosuccinate lyase homolog FzmR eliminates acetylhydrazine from N-acetyl-hydrazinosuccinate, which in turn is the product of FzmQ-catalysed acetylation of hydrazinosuccinate. Collectively, these findings suggest a path to N-acetylhydrazine from l-Asp. The incorporation of nitrogen from l-Asp into fosfazinomycin was confirmed by isotope labelling studies. Installation of the N-terminal Val of fosfazinomycin is catalysed by FzmI in a Val-tRNA dependent process.
Collapse
Affiliation(s)
- Zedu Huang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801
| | - Kwo-Kwang Abraham Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801
| |
Collapse
|
34
|
Sugai Y, Katsuyama Y, Ohnishi Y. A nitrous acid biosynthetic pathway for diazo group formation in bacteria. Nat Chem Biol 2015; 12:73-5. [DOI: 10.1038/nchembio.1991] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023]
|