1
|
Goldmeier MN, Khononov A, Pieńko T, Belakhov V, Yen FC, Baruch L, Machluf M, Baasov T. Towards catalytic fluoroquinolones: from metal-catalyzed to metal-free DNA cleavage. RSC Med Chem 2025:d4md00984c. [PMID: 40162203 PMCID: PMC11951297 DOI: 10.1039/d4md00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
A library of eight new fluoroquinolone-nuclease conjugates containing a guanidinoethyl or aminoethyl auxiliary pendant on the 1,4,7-triazacyclononane (TACN) moiety was designed and synthesized to investigate their potential as catalytic antibiotics. The Cu(ii) complexes of the designer structures showed significant in vitro hydrolytic and oxidative DNA cleavage activity and good antibacterial activity against both Gram-negative and Gram-positive bacteria. The observed activity of all the Cu(ii)-TACN-ciprofloxacin complexes was strongly inhibited in the presence of Cu(ii)-chelating agents, thereby demonstrating "vulnerability" under physiological conditions. However, selected TACN-ciprofloxacin conjugates in their metal-free form efficiently cleaved plasmid DNA under physiological conditions. The lead compound 1 showed good DNase activity which was retained in the presence of strong metal chelators and exhibited excellent antibacterial activity against both Gram-negative and Gram-positive bacteria. Density functional theory calculations combined with quantum mechanics/molecular mechanics simulations suggest a general base-general acid mechanism for the hydrolytic DNA cleavage mechanism by compound 1.
Collapse
Affiliation(s)
- Moshe N Goldmeier
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Alina Khononov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Tomasz Pieńko
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Valery Belakhov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Feng-Chun Yen
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Limor Baruch
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Marcelle Machluf
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Timor Baasov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
2
|
Kost C, Scheffer U, Kalden E, Göbel MW. Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols. ChemistryOpen 2025; 14:e202400157. [PMID: 39460429 PMCID: PMC11808266 DOI: 10.1002/open.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 10/28/2024] Open
Abstract
In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pKa of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.
Collapse
Affiliation(s)
- Catharina Kost
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Elisabeth Kalden
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Michael Wilhelm Göbel
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| |
Collapse
|
3
|
Lisi D, Vezzoni CA, Casnati A, Sansone F, Salvio R. Intra- and Intermolecular Cooperativity in the Catalytic Activity of Phosphodiester Cleavage by Self-Assembled Systems Based on Guanidinylated Calix[4]arenes. Chemistry 2023; 29:e202203213. [PMID: 36382737 DOI: 10.1002/chem.202203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
The calix[4]arene scaffold, blocked in the cone conformation through alkylation with long alkyl chains, and decorated at the upper rim with four guanidine or arginine units, effectively catalyzes the cleavage of the phosphodiester bond of DNA and RNA model compounds in water. An exhaustive kinetic investigation unequivocally points to the existence of spontaneous aggregation phenomena, driven by hydrophobic effect, occurring at different critical concentrations that depend on the identity of the compound. A pronounced superiority of the assembled structures compared with the monomers in solution was observed. Moreover, the catalytically active units, clustered on the macrocyclic tetrafunctional scaffold, were proved to efficiently cooperate in the catalytic mechanism and result in improved reaction rates compared to those of the monofunctional model compounds. The kinetic analysis is also integrated and corroborated with further experiments based on fluorescence spectroscopy and light scattering. The advantage of the supramolecular assemblies based on tetrafunctional calixarenes leads to believe that the active units can cooperate not only intramolecularly but also intermolecularly. The molecules in the aggregates can probably mold, flex and rearrange but, at the same time, keep an ordered structure that favors phosphodiester bond cleavage. This dynamic preorganization can allow the catalytic units to reach a better fitting with the substrates and perform a superior catalytic activity.
Collapse
Affiliation(s)
- Daniele Lisi
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Roma, Italy
| | - Carlo Alberto Vezzoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | - Riccardo Salvio
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Roma, Italy.,ISB - CNR Sezione Meccanismi di Reazione, Università La Sapienza, 00185, Roma, Italy
| |
Collapse
|
4
|
Ashraf MA, Li C, Norouzi F, Zhang D. New insights into the Lewis acidity of guanidinium species: Lewis acid interaction provides reactivity. CR CHIM 2020. [DOI: 10.5802/crchim.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Heinrich B, Vázquez O. 4-Methyltrityl-Protected Pyrrole and Imidazole Building Blocks for Solid Phase Synthesis of DNA-Binding Polyamides. Org Lett 2020; 22:533-536. [PMID: 31904984 DOI: 10.1021/acs.orglett.9b04288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-binding polyamides are synthetic oligomers of pyrrole/imidazole units with high specificity and affinity for double-stranded DNA. To increase their synthetic diversity, we report a mild methodology based on 4-methyltrityl (Mtt) solid phase peptide synthesis (SPPS), whose building blocks are more accessible than the standard Fmoc and Boc SPPS ones. We demonstrate the robustness of the approach by preparing and studying a hairpin with all precursors. Importantly, our strategy is orthogonal and compatible with sensitive molecules and could be readily automated.
Collapse
Affiliation(s)
- Benedikt Heinrich
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , 35043 Marburg , Germany
| | - Olalla Vázquez
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , 35043 Marburg , Germany
| |
Collapse
|
6
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
7
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
8
|
Salvio R, Volpi S, Cacciapaglia R, Sansone F, Mandolini L, Casnati A. Phosphoryl Transfer Processes Promoted by a Trifunctional Calix[4]arene Inspired by DNA Topoisomerase I. J Org Chem 2016; 81:9012-9019. [DOI: 10.1021/acs.joc.6b01643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Riccardo Salvio
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Stefano Volpi
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| | - Roberta Cacciapaglia
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Francesco Sansone
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| | - Luigi Mandolini
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Alessandro Casnati
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|