1
|
Katkevics M, MacKay JA, Rozners E. Triplex-forming peptide nucleic acids as emerging ligands to modulate structure and function of complex RNAs. Chem Commun (Camb) 2024; 60:1999-2008. [PMID: 38259187 PMCID: PMC10922694 DOI: 10.1039/d3cc05409h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Over the last three decades, our view of RNA has changed from a simple intermediate supporting protein synthesis to a major regulator of biological processes. In the expanding area of RNA research, peptide nucleic acid (PNA) is emerging as a promising ligand for triple-helical recognition of complex RNAs. As discussed in this feature article, the key advantages of PNAs are high sequence specificity and affinity for RNA (>10 fold higher than for DNA) that are difficult to achieve with small molecule ligands. Emerging studies demonstrate that triple-helical binding of PNAs can modulate biological function and control dynamic conformational equilibria of complex folded RNAs. These results suggest that PNA has a unique potential as a research tool and therapeutic compound targeting RNA. The remaining problems hampering advances in these directions are limitations of sequences that can be recognized by Hoogsteen triplexes (typically purine rich tracts), poor cellular uptake and bioavailability of PNA, and potential off-target effects in biological systems. Recent exciting studies are discussed that illustrate how synthetic nucleic acid chemistry provides innovative solutions for these problems.
Collapse
Affiliation(s)
- Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - James A MacKay
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
2
|
Hernández Bustos A, Martiny E, Bom Pedersen N, Parvathaneni RP, Hansen J, Ji HP, Astakhova K. Short Tandem Repeat DNA Profiling Using Perylene-Oligonucleotide Fluorescence Assay. Anal Chem 2023; 95:7872-7879. [PMID: 37183373 DOI: 10.1021/acs.analchem.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report an amplification-free genotyping method to determine the number of human short tandem repeats (STRs). DNA-based STR profiling is a robust method for genetic identification purposes such as forensics and biobanking and for identifying specific molecular subtypes of cancer. STR detection requires polymerase amplification, which introduces errors that obscure the correct genotype. We developed a new method that requires no polymerase. First, we synthesized perylene-nucleoside reagents and incorporated them into oligonucleotide probes that recognize five common human STRs. Using these probes and a bead-based hybridization approach, accurate STR detection was achieved in only 1.5 h, including DNA preparation steps, with up to a 1000-fold target DNA enrichment. This method was comparable to PCR-based assays. Using standard fluorometry, the limit of detection was 2.00 ± 0.07 pM for a given target. We used this assay to accurately identify STRs from 50 human subjects, achieving >98% consensus with sequencing data for STR genotyping.
Collapse
Affiliation(s)
- Adrián Hernández Bustos
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Region Hovedstaden 2800, Denmark
| | - Elisa Martiny
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Region Hovedstaden 2800, Denmark
| | - Nadia Bom Pedersen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Region Hovedstaden 2800, Denmark
| | - Rohith Pavan Parvathaneni
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Region Hovedstaden 2800, Denmark
| | - Jonas Hansen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Region Hovedstaden 2800, Denmark
- School of Medicine, Stanford University, 94305 Stanford, California, United States
| | - Hanlee P Ji
- School of Medicine, Stanford University, 94305 Stanford, California, United States
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Region Hovedstaden 2800, Denmark
| |
Collapse
|
3
|
Saarbach J, Sabale PM, Winssinger N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr Opin Chem Biol 2019; 52:112-124. [PMID: 31541865 DOI: 10.1016/j.cbpa.2019.06.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Peptide nucleic acid (PNA) stands as one of the most successful artificial oligonucleotide mimetics. Salient features include the stability of hybridization complexes (either as duplexes or triplexes), metabolic stability, and ease of chemical modifications. These features have enabled important applications such as antisense agents, gene editing, nucleic acid sensing and as a platform to program the assembly of PNA-tagged molecules. Here, we review recent advances in these areas.
Collapse
Affiliation(s)
- Jacques Saarbach
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Pramod M Sabale
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| |
Collapse
|
4
|
Krishna MS, Toh DFK, Meng Z, Ong AAL, Wang Z, Lu Y, Xia K, Prabakaran M, Chen G. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog. Anal Chem 2019; 91:5331-5338. [PMID: 30873827 DOI: 10.1021/acs.analchem.9b00280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. The strategy of directly targeting double-stranded RNA (dsRNA) by triplex-formation is relatively underexplored mainly due to the weak binding at physiological conditions for the traditional triplex-forming oligonucleotides (TFOs). Compared to DNA and RNA, peptide nucleic acids (PNAs) are chemically stable and have a neutral peptide-like backbone, and thus, they show significantly enhanced binding to natural nucleic acids. We have successfully developed nucleobase-modified dsRNA-binding PNAs (dbPNAs) to facilitate structure-specific and selective recognition of dsRNA over single-stranded RNA (ssRNA) and dsDNA regions at near-physiological conditions. The triplex formation strategy facilitates the targeting of not only the sequence but also the secondary structure of RNA. Here, we report the development of novel dbPNA-based fluorescent light-up probes through the incorporation of A-U pair-recognizing 5-benzothiophene uracil (btU). The incorporation of btU into dbPNAs does not affect the binding affinity toward dsRNAs significantly, in most cases, as evidenced by our nondenaturing gel shift assay data. The blue fluorescence emission intensity of btU-modified dbPNAs is sequence- and structure-specifically enhanced by dsRNAs, including the influenza viral RNA panhandle duplex and HIV-1-1 ribosomal frameshift-inducing RNA hairpin, but not ssRNAs or DNAs, at 200 mM NaCl, pH 7.5. Thus, dbPNAs incorporating btU-modified and other further modified fluorescent nucleobases will be useful biochemical tools for probing and detecting RNA structures, interactions, and functions.
Collapse
Affiliation(s)
- Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenyu Meng
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenzhang Wang
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| |
Collapse
|
5
|
Sabale P, Ambi UB, Srivatsan SG. Clickable PNA Probes for Imaging Human Telomeres and Poly(A) RNAs. ACS OMEGA 2018; 3:15343-15352. [PMID: 30556003 PMCID: PMC6289544 DOI: 10.1021/acsomega.8b02550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 05/10/2023]
Abstract
The ability to bind strongly to complementary nucleic acid sequences, invade complex nucleic acid structures, and resist degradation by cellular enzymes has made peptide nucleic acid (PNA) oligomers as very useful hybridization probes in molecular diagnosis. For such applications, the PNA oligomers have to be labeled with appropriate reporters as they lack intrinsic labels that can be used in biophysical assays. Although solid-phase synthesis is commonly used to attach reporters onto PNA, development of milder and modular labeling methods will provide access to PNA oligomers labeled with a wider range of biophysical tags. Here, we describe the establishment of a postsynthetic modification strategy based on bioorthogonal chemical reactions in functionalizing PNA oligomers in solution with a variety of tags. A toolbox composed of alkyne- and azide-modified monomers were site-specifically incorporated into PNA oligomers and postsynthetically click-functionalized with various tags, ranging from sugar, amino acid, biotin, to fluorophores, by using copper(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, and Staudinger ligation reactions. As a proof of utility of this method, fluorescent PNA hybridization probes were developed and used in imaging human telomeres in chromosomes and poly(A) RNAs in cells. Taken together, this simple approach of generating a wide range of functional PNA oligomers will expand the use of PNA in molecular diagnosis.
Collapse
|
6
|
Manna S, Srivatsan SG. Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments. RSC Adv 2018; 8:25673-25694. [PMID: 30210793 PMCID: PMC6130854 DOI: 10.1039/c8ra03708f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
Biophysical and biochemical investigations provide compelling evidence connecting the four-stranded G-quadruplex (GQ) structure with its role in regulating multiple cellular processes. Hence, modulating the function of GQs by using small molecule binders is being actively pursued as a strategy to develop new chemotherapeutic agents. However, sequence diversity and structural polymorphism of GQs have posed immense challenges in terms of understanding what conformation a G-rich sequence adopts inside the cell and how to specifically target a GQ motif amidst several other GQ-forming sequences. In this context, here we review recent developments in the applications of biophysical tools that use fluorescence readout to probe the GQ structure and recognition in cell-free and cellular environments. First, we provide a detailed discussion on the utility of covalently labeled environment-sensitive fluorescent nucleoside analogs in assessing the subtle difference in GQ structures and their ligand binding abilities. Furthermore, a detailed discussion on structure-specific antibodies and small molecule probes used to visualize and confirm the existence of DNA and RNA GQs in cells is provided. We also highlight the open challenges in the study of tetraplexes (GQ and i-motif structures) and how addressing these challenges by developing new tools and techniques will have a profound impact on tetraplex-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| |
Collapse
|
7
|
Sabale PM, Ambi UB, Srivatsan SG. A Lucifer-Based Environment-Sensitive Fluorescent PNA Probe for Imaging Poly(A) RNAs. Chembiochem 2018; 19:826-835. [PMID: 29396904 PMCID: PMC5972818 DOI: 10.1002/cbic.201700661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Fluorescence‐based oligonucleotide (ON) hybridization probes greatly aid the detection and profiling of RNA sequences in cells. However, certain limitations such as target accessibility and hybridization efficiency in cellular environments hamper their broad application because RNAs can form complex and stable structures. In this context, we have developed a robust hybridization probe suitable for imaging RNA in cells by combining the properties of 1) a new microenvironment‐sensitive fluorescent nucleobase analogue, obtained by attaching the Lucifer chromophore (1,8‐naphthalimide) at the 5‐position of uracil, and 2) a peptide nucleic acid (PNA) capable of forming stable hybrids with RNA. The fluorescence of the PNA base analogue labeled with the Lucifer chromophore, when incorporated into PNA oligomers and hybridized to complementary and mismatched ONs, is highly responsive to its neighboring base environment. Notably, the PNA base reports the presence of an adenine repeat in an RNA ON with reasonable enhancement in fluorescence. This feature of the emissive analogue enabled the construction of a poly(T) PNA probe for the efficient visualization of polyadenylated [poly(A)] RNAs in cells—poly(A) being an important motif that plays vital roles in the lifecycle of many types of RNA. Our results demonstrate that such responsive fluorescent nucleobase analogues, when judiciously placed in PNA oligomers, could generate useful hybridization probes to detect nucleic acid sequences in cells and also to image them.
Collapse
Affiliation(s)
- Pramod M Sabale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Uddhav B Ambi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
8
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Synthesis of two 6-aza-uridines modified by benzoheterocycle as environmentally sensitive fluorescent nucleosides. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Jiang G, Chen X, Xu L, Cao Y, Hong S, Liu M, Cao W, Pei R. Design and Synthesis of a Dimethylindole Red Trimer: A New Light-Up Red-Emitting Fluorescent Probe for G-Quadruplexes. ChemistrySelect 2017. [DOI: 10.1002/slct.201601889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guimei Jiang
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
- Department of Chemistry, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Xing Chen
- Public Health of Guangxi Medical University; Nanning 530021 China
| | - Lijun Xu
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Shanni Hong
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Weiguo Cao
- Department of Chemistry, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| |
Collapse
|