1
|
Tonoli A, Anselmi S, Ward JM, Hailes HC, Jeffries JWE. Expanding the Enzymatic Toolbox for Carboligation: Increasing the Diversity of the 'Split' Transketolase Sequence Space. Chembiochem 2025; 26:e202401028. [PMID: 39887801 DOI: 10.1002/cbic.202401028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Transketolases (TKs) are thiamine diphosphate (ThDP)-dependent enzymes that catalyze the transfer of two-carbon units in a stereoselective manner, making them valuable biocatalysts for sustainable processes. Most known TKs are about 650 amino acids long; however, a second type found in Archaea and many Bacteria consists of two proteins, each of about 300 amino acids. Exploring the unique features and differences of split TKs may help in assessing their potential use in biocatalysis and for uncovering new reactivities. Additionally, it could provide valuable information on how their structure relates to their function, especially compared to full-length TKs. In this study, we significantly expanded the known repertoire of split TKs approximately 14-fold to the best of our knowledge, by identifying and providing accessions of nearly 500 putative split-TK subunit pairs. Moreover, we doubled the number of experimentally produced and tested split TKs by cloning, purifying, and testing ten candidates retrieved from genomes and in-house metagenomes. Interestingly, pQR2809 and pQR2812, derived from hyperthermophilic organisms, showed enhanced thermostability compared to other TK examples in the literature, maintaining partial activity after heating at 90 °C or 100 °C for 1 hour, respectively.
Collapse
Affiliation(s)
- Alessia Tonoli
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, W1CE 6BT, United Kingdom
| | - Silvia Anselmi
- Department of Chemistry, University College London Christopher Ingold Building, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - John M Ward
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, W1CE 6BT, United Kingdom
| | - Helen C Hailes
- Department of Chemistry, University College London Christopher Ingold Building, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Jack W E Jeffries
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, W1CE 6BT, United Kingdom
| |
Collapse
|
2
|
Mukhopadhyay A, Karu K, Dalby PA. Two-substrate enzyme engineering using small libraries that combine the substrate preferences from two different variant lineages. Sci Rep 2024; 14:1287. [PMID: 38218974 PMCID: PMC10787763 DOI: 10.1038/s41598-024-51831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Improving the range of substrates accepted by enzymes with high catalytic activity remains an important goal for the industrialisation of biocatalysis. Many enzymes catalyse two-substrate reactions which increases the complexity in engineering them for the synthesis of alternative products. Often mutations are found independently that can improve the acceptance of alternatives to each of the two substrates. Ideally, we would be able to combine mutations identified for each of the two alternative substrates, and so reprogramme new enzyme variants that synthesise specific products from their respective two-substrate combinations. However, as we have previously observed for E. coli transketolase, the mutations that improved activity towards aromatic acceptor aldehydes, did not successfully recombine with mutations that switched the donor substrate to pyruvate. This likely results from several active site residues having multiple roles that can affect both of the substrates, as well as structural interactions between the mutations themselves. Here, we have designed small libraries, including both natural and non-natural amino acids, based on the previous mutational sites that impact on acceptance of the two substrates, to achieve up to 630× increases in kcat for the reaction with 3-formylbenzoic acid (3-FBA) and pyruvate. Computational docking was able to determine how the mutations shaped the active site to improve the proximity of the 3-FBA substrate relative to the enamine-TPP intermediate, formed after the initial reaction with pyruvate. This work opens the way for small libraries to rapidly reprogramme enzyme active sites in a plug and play approach to catalyse new combinations of two-substrate reactions.
Collapse
Affiliation(s)
- Arka Mukhopadhyay
- Department of Biochemical Engineering, UCL, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, UCL, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Casajus H, Lagarde A, Nauton L, Ocal N, Leremboure M, Fessner WD, Duguet N, Charmantray F, Hecquet L. Cleavage of Aliphatic α-Hydroxy Ketones by Evolved Transketolase from Geobacillus stearothermophilus. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hubert Casajus
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Aurélie Lagarde
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Nazim Ocal
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Martin Leremboure
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Nicolas Duguet
- Univ Lyon, Université Claude-Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), F-69100 Villeurbanne, France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Engineering the 2-Oxoglutarate Dehydrogenase Complex to Understand Catalysis and Alter Substrate Recognition. REACTIONS 2022. [DOI: 10.3390/reactions3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The E. coli 2-oxoglutarate dehydrogenase complex (OGDHc) is a multienzyme complex in the tricarboxylic acid cycle, consisting of multiple copies of three components, 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3), which catalyze the formation of succinyl-CoA and NADH (+H+) from 2-oxoglutarate. This review summarizes applications of the site saturation mutagenesis (SSM) to engineer E. coli OGDHc with mechanistic and chemoenzymatic synthetic goals. First, E1o was engineered by creating SSM libraries at positions His260 and His298.Variants were identified that: (a) lead to acceptance of substrate analogues lacking the 5-carboxyl group and (b) performed carboligation reactions producing acetoin-like compounds with good enantioselectivity. Engineering the E2o catalytic (core) domain enabled (a) assignment of roles for pivotal residues involved in catalysis, (b) re-construction of the substrate-binding pocket to accept substrates other than succinyllysyldihydrolipoamide and (c) elucidation of the mechanism of trans-thioesterification to involve stabilization of a tetrahedral oxyanionic intermediate with hydrogen bonds by His375 and Asp374, rather than general acid–base catalysis which has been misunderstood for decades. The E. coli OGDHc is the first example of a 2-oxo acid dehydrogenase complex which was evolved to a 2-oxo aliphatic acid dehydrogenase complex by engineering two consecutive E1o and E2o components.
Collapse
|
5
|
Fúster Fernández I, Hecquet L, Fessner W. Transketolase Catalyzed Synthesis of
N
‐Aryl Hydroxamic Acids. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Fúster Fernández
- Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Laurence Hecquet
- Institut de Chimie de Clermont-Ferrand CNRS Auvergne Clermont INP Université Clermont Auverne 63000 Clermont-Ferrand France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
6
|
Cárdenas-Fernández M, Subrizi F, Dobrijevic D, Hailes HC, Ward JM. Characterisation of a hyperthermophilic transketolase from Thermotoga maritima DSM3109 as a biocatalyst for 7-keto-octuronic acid synthesis. Org Biomol Chem 2021; 19:6493-6500. [PMID: 34250527 PMCID: PMC8317047 DOI: 10.1039/d1ob01237a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Transketolase (TK) is a fundamentally important enzyme in industrial biocatalysis which carries out a stereospecific carbon-carbon bond formation, and is widely used in the synthesis of prochiral ketones. This study describes the biochemical and molecular characterisation of a novel and unusual hyperthermophilic TK from Thermotoga maritima DSM3109 (TKtmar). TKtmar has a low protein sequence homology compared to the already described TKs, with key amino acid residues in the active site highly conserved. TKtmar has a very high optimum temperature (>90 °C) and shows pronounced stability at high temperature (e.g. t1/2 99 and 9.3 h at 50 and 80 °C, respectively) and in presence of organic solvents commonly used in industry (DMSO, acetonitrile and methanol). Substrate screening showed activity towards several monosaccharides and aliphatic aldehydes. In addition, for the first time, TK specificity towards uronic acids was achieved with TKtmar catalysing the efficient conversion of d-galacturonic acid and lithium hydroxypyruvate into 7-keto-octuronic acid, a very rare C8 uronic acid, in high yields (98%, 49 mM).
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK. and School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Fabiana Subrizi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Marsden SR, McMillan DGG, Hanefeld U. Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids. Int J Mol Sci 2020; 21:ijms21228641. [PMID: 33207817 PMCID: PMC7696235 DOI: 10.3390/ijms21228641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
The synthetic properties of the Thiamine diphosphate (ThDP)-dependent pyruvate dehydrogenase E1 subunit from Escherichia coli (EcPDH E1) was assessed for carboligation reactions with aliphatic ketoacids. Due to its role in metabolism, EcPDH E1 was previously characterised with respect to its biochemical properties, but it was never applied for synthetic purposes. Here, we show that EcPDH E1 is a promising biocatalyst for the production of chiral α-hydroxyketones. WT EcPDH E1 shows a 180-250-fold higher catalytic efficiency towards 2-oxobutyrate or pyruvate, respectively, in comparison to engineered transketolase variants from Geobacillus stearothermophilus (TKGST). Its broad active site cleft allows for the efficient conversion of both (R)- and (S)-configured α-hydroxyaldehydes, next to linear and branched aliphatic aldehydes as acceptor substrates under kinetically controlled conditions. The alternate, thermodynamically controlled self-reaction of aliphatic aldehydes was shown to be limited to low levels of conversion, which we propose to be due to their large hydration constants. Additionally, the thermodynamically controlled approach was demonstrated to suffer from a loss of stereoselectivity, which makes it unfeasible for aliphatic substrates.
Collapse
|
8
|
Casajus H, Lagarde A, Leremboure M, De Dios Miguel T, Nauton L, Thery V, Fessner W, Duguet N, Charmantray F, Hecquet L. Enzymatic Synthesis of Aliphatic Acyloins Catalyzed by Thermostable Transketolase. ChemCatChem 2020. [DOI: 10.1002/cctc.202001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hubert Casajus
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Aurélie Lagarde
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Martin Leremboure
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Thomas De Dios Miguel
- Univ Lyon, Université Claude Bernard Lyon 1 CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) F-69100 Villeurbanne France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und Biochemie Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Nicolas Duguet
- Univ Lyon, Université Claude Bernard Lyon 1 CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) F-69100 Villeurbanne France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| |
Collapse
|
9
|
Winning the numbers game in enzyme evolution - fast screening methods for improved biotechnology proteins. Curr Opin Struct Biol 2020; 63:123-133. [PMID: 32615371 DOI: 10.1016/j.sbi.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/02/2023]
Abstract
The booming demand for environmentally benign industrial processes relies on the ability to quickly find or engineer a biocatalyst suitable to ideal process conditions. Both metagenomic approaches and directed evolution involve the screening of huge libraries of protein variants, which can only be managed reasonably by flexible platforms for (ultra)high-throughput profiling against the desired criteria. Here, we review the most recent additions toward a growing toolbox of versatile assays using fluorescence, absorbance and mass spectrometry readouts. While conventional solution based high-throughput screening in microtiter plate formats is still important, the implementation of novel screening protocols for microfluidic cell or droplet sorting systems supports technological advances for ultra-high-frequency screening that now can dramatically reduce the timescale of engineering projects. We discuss practical issues of scope, scalability, sensitivity and stereoselectivity for the improvement of biotechnologically relevant enzymes from different classes.
Collapse
|
10
|
Yu H, Hernández López RI, Steadman D, Méndez‐Sánchez D, Higson S, Cázares‐Körner A, Sheppard TD, Ward JM, Hailes HC, Dalby PA. Engineering transketolase to accept both unnatural donor and acceptor substrates and produce α‐hydroxyketones. FEBS J 2019; 287:1758-1776. [DOI: 10.1111/febs.15108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering University College London UK
| | | | | | | | - Sally Higson
- Department of Chemistry University College London UK
| | | | | | - John M. Ward
- Department of Biochemical Engineering University College London UK
| | | | - Paul A. Dalby
- Department of Biochemical Engineering University College London UK
| |
Collapse
|
11
|
Henríquez M, Braun‐Galleani S, Nesbeth DN. Whole cell biosynthetic activity ofKomagataella phaffii(Pichia pastoris) GS115 strains engineered with transgenes encodingChromobacterium violaceumω‐transaminase alone or combined with native transketolase. Biotechnol Prog 2019; 36:e2893. [DOI: 10.1002/btpr.2893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Darren N. Nesbeth
- Department of Biochemical EngineeringUniversity College London London UK
| |
Collapse
|
12
|
Baierl A, Theorell A, Mackfeld U, Marquardt P, Hoffmann F, Moers S, Nöh K, Buchholz PCF, Pleiss J, Pohl M. Towards a Mechanistic Understanding of Factors Controlling the Stereoselectivity of Transketolase. ChemCatChem 2018. [DOI: 10.1002/cctc.201800299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Baierl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Axel Theorell
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Ursula Mackfeld
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Philipp Marquardt
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | | | - Stephanie Moers
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry; University of Stuttgart; 70569 Stuttgart Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry; University of Stuttgart; 70569 Stuttgart Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| |
Collapse
|
13
|
Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A. Review: Engineering of thermostable enzymes for industrial applications. APL Bioeng 2018; 2:011501. [PMID: 31069285 PMCID: PMC6481699 DOI: 10.1063/1.4997367] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 01/19/2023] Open
Abstract
The catalytic properties of some selected enzymes have long been exploited to carry out efficient and cost-effective bioconversions in a multitude of research and industrial sectors, such as food, health, cosmetics, agriculture, chemistry, energy, and others. Nonetheless, for several applications, naturally occurring enzymes are not considered to be viable options owing to their limited stability in the required working conditions. Over the years, the quest for novel enzymes with actual potential for biotechnological applications has involved various complementary approaches such as mining enzyme variants from organisms living in extreme conditions (extremophiles), mimicking evolution in the laboratory to develop more stable enzyme variants, and more recently, using rational, computer-assisted enzyme engineering strategies. In this review, we provide an overview of the most relevant enzymes that are used for industrial applications and we discuss the strategies that are adopted to enhance enzyme stability and/or activity, along with some of the most relevant achievements. In all living species, many different enzymes catalyze fundamental chemical reactions with high substrate specificity and rate enhancements. Besides specificity, enzymes also possess many other favorable properties, such as, for instance, cost-effectiveness, good stability under mild pH and temperature conditions, generally low toxicity levels, and ease of termination of activity. As efficient natural biocatalysts, enzymes provide great opportunities to carry out important chemical reactions in several research and industrial settings, ranging from food to pharmaceutical, cosmetic, agricultural, and other crucial economic sectors.
Collapse
Affiliation(s)
- Federica Rigoldi
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Donini
- Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via G. Pascoli 70/3, 20133 Milano, Italy
| | - Alberto Redaelli
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via G. Pascoli 70/3, 20133 Milano, Italy
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
14
|
Saravanan T, Junker S, Kickstein M, Hein S, Link MK, Ranglack J, Witt S, Lorillière M, Hecquet L, Fessner WD. Donor-Promiskuität einer thermostabilen Transketolase durch gelenkte Evolution - effektive Komplementierung der 1-Desoxy-d
- xylulose-5-phosphat-Synthase-Aktivität. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thangavelu Saravanan
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Sebastian Junker
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Michael Kickstein
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Sascha Hein
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Marie-Kristin Link
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Jan Ranglack
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Samantha Witt
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| | - Marion Lorillière
- Clermont Université, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, CNRS UMR 6296, ICCF; BP10448 63177 Aubière Frankreich
| | - Laurence Hecquet
- Clermont Université, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, CNRS UMR 6296, ICCF; BP10448 63177 Aubière Frankreich
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Deutschland
| |
Collapse
|
15
|
Saravanan T, Junker S, Kickstein M, Hein S, Link MK, Ranglack J, Witt S, Lorillière M, Hecquet L, Fessner WD. Donor Promiscuity of a Thermostable Transketolase by Directed Evolution: Efficient Complementation of 1-Deoxy-d
-xylulose-5-phosphate Synthase Activity. Angew Chem Int Ed Engl 2017; 56:5358-5362. [DOI: 10.1002/anie.201701169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Thangavelu Saravanan
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Sebastian Junker
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Michael Kickstein
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Sascha Hein
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Marie-Kristin Link
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Jan Ranglack
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Samantha Witt
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Marion Lorillière
- Université Clermont Auvergne; CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-; 63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Université Clermont Auvergne; CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-; 63000 Clermont-Ferrand France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| |
Collapse
|