1
|
Usui R, Koizumi A, Nitta K, Kuribara T, Totani K. Multisite Partial Glycosylation Approach for Preparation of Biologically Relevant Oligomannosyl Branches Contribute to Lectin Affinity Analysis. J Org Chem 2023; 88:14357-14367. [PMID: 37792638 DOI: 10.1021/acs.joc.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
High-mannose-type glycans play essential biological roles, e.g., immune response and glycoprotein quality control, and preparing a series of oligomannosyl branches of high-mannose-type glycans is critical for biological studies. However, obtaining sufficient amounts of the various oligomannosyl branches is challenging. In this study, we demonstrated a partial glycosylation strategy for the single-step synthesis of various biologically relevant oligomannosyl-branched structures. First, Manα1-6(Manα1-3)Man-type oligomannosyl branch was synthesized via double glycosylation from a 3,6-di-OH mannosyl acceptor and fluorinated mannosyl donor with perfect α-selectivity. Subsequent partial glycosylation by reducing the equivalent of the mannosyl donor enabled to obtain biologically relevant Manα1-2Manα1-6(Manα1-2Manα1-3)Man, Manα1-6(Manα1-2Manα1-3)Man, Manα1-2Manα1-6(Manα1-3)Man, and Manα1-6(Manα1-3)Man in one-pot. Each oligomannosyl branch could be easily purified by liquid chromatography. The resulting structural isomers were identified by 2D-HMBC NMR. A systematic lectin affinity assay using the prepared oligomannosyl branches showed different specificities for the Galanthus nivalis lectin between structural isomers of the oligomannosyl branches with the same number of mannose residues..
Collapse
Affiliation(s)
- Ruchio Usui
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Akira Koizumi
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Kyohei Nitta
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Taiki Kuribara
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Kiichiro Totani
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| |
Collapse
|
2
|
Burchill L, Males A, Kaur A, Davies GJ, Williams SJ. Structure, Function and Mechanism of N‐Glycan Processing Enzymes:
endo
‐α‐1,2‐Mannanase and
endo
‐α‐1,2‐Mannosidase. Isr J Chem 2022. [DOI: 10.1002/ijch.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne Parkville Victoria Australia 3010
| | - Alexandra Males
- Department of Chemistry University of York York YO10 5DD United Kingdom
| | - Arashdeep Kaur
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne Parkville Victoria Australia 3010
| | - Gideon J. Davies
- Department of Chemistry University of York York YO10 5DD United Kingdom
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne Parkville Victoria Australia 3010
| |
Collapse
|
3
|
Chen WA, Chen YH, Hsieh CY, Hung PF, Chen CW, Chen CH, Lin JL, Cheng TJR, Hsu TL, Wu YT, Shen CN, Cheng WC. Harnessing natural-product-inspired combinatorial chemistry and computation-guided synthesis to develop N-glycan modulators as anticancer agents. Chem Sci 2022; 13:6233-6243. [PMID: 35733906 PMCID: PMC9159088 DOI: 10.1039/d1sc05894k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Modulation of N-glycosylation using human Golgi α-mannosidase II (α-hGMII) inhibitors is a potential anticancer approach, but the clinical utility of current α-hGMII inhibitors is limited by their co-inhibition of human lysosomal α-mannosidase (α-hLM), resulting in abnormal storage of oligomannoses. We describe the synthesis and screening of a small library of novel bicyclic iminosugar-based scaffolds, prepared via natural product-inspired combinatorial chemistry (NPICC), which resulted in the identification of a primary α-hGMII inhibitor with 13.5-fold selectivity over α-hLM. Derivatization of this primary inhibitor using computation-guided synthesis (CGS) yielded an advanced α-hGMII inhibitor with nanomolar potency and 106-fold selectivity over α-hLM. In vitro studies demonstrated its N-glycan modulation and inhibitory effect on hepatocellular carcinoma (HCC) cells. In vivo studies confirmed its encouraging anti-HCC activity, without evidence of oligomannose accumulation. An integrated strategy of Natural-Product-Inspired Combinatorial Chemistry (NPICC) and Computation-Guided Synthesis is used to develop an α-hGMII inhibitor with 106-fold selectivity over α-hLM, with inhibitory effect on hepatocellular carcinoma.![]()
Collapse
Affiliation(s)
- Wei-An Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Yu-Hsin Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chiao-Yun Hsieh
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Pi-Fang Hung
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chiao-Wen Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chien-Hung Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Ting-Jen R Cheng
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Ying-Ta Wu
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan .,Department of Chemistry, National Cheng-Kung University 1, University Road Tainan 701 Taiwan.,Department of Applied Chemistry, National Chiayi University 300, Xuefu Rd, East Dist. Chiayi 600 Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University 100 Shih-Chuan 1st Rd Kaohsiung 807 Taiwan
| |
Collapse
|
4
|
Kuribara T, Totani K. Oligomannose-Type Glycan Processing in the Endoplasmic Reticulum and Its Importance in Misfolding Diseases. BIOLOGY 2022; 11:biology11020199. [PMID: 35205066 PMCID: PMC8869290 DOI: 10.3390/biology11020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Glycans play many roles in biological processes. For instance, they mediate cell–cell interaction, viral infection, and protein folding of glycoproteins. Glycoprotein folding in the endoplasmic reticulum (ER) is closely related to the onset of diseases such as misfolding diseases caused by accumulation of misfolded proteins in the ER. In this review, we focused on oligomannose-type glycan processing in the ER, which has central roles in glycoprotein folding in the ER, and we summarise relationship between oligomannose-type glycan processing and misfolding diseases arising from the disruption of ER homeostasis. Abstract Glycoprotein folding plays a critical role in sorting glycoprotein secretion and degradation in the endoplasmic reticulum (ER). Furthermore, relationships between glycoprotein folding and several diseases, such as type 2 diabetes and various neurodegenerative disorders, are indicated. Patients’ cells with type 2 diabetes, and various neurodegenerative disorders induce ER stress, against which the cells utilize the unfolded protein response for protection. However, in some cases, chronic and/or massive ER stress causes critical damage to cells, leading to the onset of ER stress-related diseases, which are categorized into misfolding diseases. Accumulation of misfolded proteins may be a cause of ER stress, in this respect, perturbation of oligomannose-type glycan processing in the ER may occur. A great number of studies indicate the relationships between ER stress and misfolding diseases, while little evidence has been reported on the connection between oligomannose-type glycan processing and misfolding diseases. In this review, we summarize alteration of oligomannose-type glycan processing in several ER stress-related diseases, especially misfolding diseases and show the possibility of these alteration of oligomannose-type glycan processing as indicators of diseases.
Collapse
|
5
|
Nitta K, Kuribara T, Totani K. Synthetic trisaccharides reveal discrimination of endo-glycosidic linkages by exo-acting α-1,2-mannosidases in the endoplasmic reticulum. Org Biomol Chem 2021; 19:4137-4145. [PMID: 33876795 DOI: 10.1039/d1ob00428j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tri-antennary Man9GlcNAc2 glycan on the surface of endoplasmic reticulum (ER) glycoproteins functions as a glycoprotein secretion or degradation signal after regioselective cleavage of the terminal α-1,2-mannose residue of each branch. Four α-1,2-mannosidases-ER mannosidase I, ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1), EDEM2, and EDEM3-are involved in the production of these signal glycans. Although selective production of signal glycans is important in determining the fate of glycoproteins, the branch-discrimination abilities of the α-1,2-mannosidases are not well understood. A structural feature of the Man9GlcNAc2 glycan is that all terminal glycosidic linkages of the three branches are of the α-1,2 type, while the adjacent inner glycosidic linkages are different. In this study, we examined whether the α-1,2-mannosidases showed branch specificity by discriminating between different inner glycosides. Four trisaccharides with different glycosidic linkages [Manα1-2Manα1-2Man (natural A-branch), Manα1-2Manα1-3Man (natural B-branch), Manα1-2Manα1-6Man (natural C-branch), and Manα1-2Manα1-4Man (unnatural D-branch)] were synthesized and used to evaluate the hypothesis. When synthesizing these oligosaccharides, highly stereoselective glycosylation was achieved with a high yield in each case by adding a weak base or tuning the polarity of the mixed solvent. Enzymatic hydrolysis of the synthetic trisaccharides by a mouse liver ER fraction containing the target enzymes showed that the ER α-1,2-mannosidases had clear specificity for the trisaccharides in the order of A-branch > B-branch > C-branch ≈ D-branch. Various competitive experiments have revealed for the first time that α-1,2-mannosidase with inner glycoside specificity is present in the ER. Our findings suggest that exo-acting ER α-1,2-mannosidases can discriminate between endo-glycosidic linkages.
Collapse
Affiliation(s)
- Kyohei Nitta
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo, 180-8633, Japan.
| | - Taiki Kuribara
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo, 180-8633, Japan.
| | - Kiichiro Totani
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo, 180-8633, Japan.
| |
Collapse
|
6
|
Kuribara T, Usui R, Totani K. Glycan structure-based perspectives on the entry and release of glycoproteins in the calnexin/calreticulin cycle. Carbohydr Res 2021; 502:108273. [PMID: 33713911 DOI: 10.1016/j.carres.2021.108273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
N-glycans are attached to newly synthesised polypeptides and are involved in the folding, secretion, and degradation of N-linked glycoproteins. In particular, the calnexin/calreticulin cycle, which is the central mechanism of the entry and release of N-linked glycoproteins depending on the folding sates, has been well studied. In addition to biological studies on the calnexin/calreticulin cycle, several studies have revealed complementary roles of in vitro chemistry-based research in the structure-based understanding of the cycle. In this mini-review, we summarise chemistry-based results and highlight their importance for further understanding of the cycle.
Collapse
Affiliation(s)
- Taiki Kuribara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan
| | - Ruchio Usui
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan
| | - Kiichiro Totani
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan.
| |
Collapse
|
7
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
8
|
Kuribara T, Totani K. Structural insights into N-linked glycan-mediated protein folding from chemical and biological perspectives. Curr Opin Struct Biol 2020; 68:41-47. [PMID: 33296772 DOI: 10.1016/j.sbi.2020.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/26/2022]
Abstract
About half of all newly synthesized proteins have N-linked glycans. These glycans play pivotal roles in controlling the folding, sorting, and degradation of glycoproteins via several glycan-related proteins. The glycan-mediated protein quality control system is important for cellular homeostasis. In this review, we summarize recent advances in our understanding of the system and discuss structural insights from chemical and biological perspectives. In particular, we focus on the mechanisms by which these mediators respond to several folding states of glycoproteins.
Collapse
Affiliation(s)
- Taiki Kuribara
- Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Kiichiro Totani
- Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| |
Collapse
|
9
|
Ito Y, Kajihara Y, Takeda Y. Chemical‐Synthesis‐Based Approach to Glycoprotein Functions in the Endoplasmic Reticulum. Chemistry 2020; 26:15461-15470. [DOI: 10.1002/chem.202004158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yukishige Ito
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
| | - Yasuhiro Kajihara
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
| | - Yoichi Takeda
- Department of Biotechnology Ritsumeikan University Kusatsu Shiga 5258577 Japan
| |
Collapse
|
10
|
α-glucosidase inhibitors as host-directed antiviral agents with potential for the treatment of COVID-19. Biochem Soc Trans 2020; 48:1287-1295. [PMID: 32510142 DOI: 10.1042/bst20200505] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/12/2023]
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has pushed the health systems of many countries to breaking point and precipitated social distancing measures that have crippled economic activities across the globe. A return to normality is unlikely until effective therapeutics and a vaccine are available. The immediacy of this problem suggests that drug strategies should focus on repurposing approved drugs or late-stage clinical candidates, as these have the shortest path to use in the clinic. Here, we review and discuss the role of host cell N-glycosylation pathways to virus replication and the drugs available to disrupt these pathways. In particular, we make a case for evaluation of the well-tolerated drugs miglitol, celgosivir and especially miglustat for the treatment of COVID-19.
Collapse
|
11
|
Kuribara T, Imagawa A, Hirano M, Ito Y, Totani K. Metabolic syndrome perturbs deglucosylation and reglucosylation in the glycoprotein folding cycle. FEBS Lett 2020; 594:1759-1769. [DOI: 10.1002/1873-3468.13780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Taiki Kuribara
- Department of Materials and Life Science Seikei University Musashino Japan
| | - Ayami Imagawa
- Department of Materials and Life Science Seikei University Musashino Japan
| | - Makoto Hirano
- Department of Pharmacy Yasuda Women’s University Hiroshima Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory RIKEN Wako Japan
| | - Kiichiro Totani
- Department of Materials and Life Science Seikei University Musashino Japan
| |
Collapse
|
12
|
Kuribara T. Selective Manipulation of Endoplasmic Reticulum Mannosidase Activities Using Inhibitor as Molecular Tool. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.1826.4j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Taiki Kuribara
- Department of Materials and Life Science, Seikei University
| |
Collapse
|
13
|
Kuribara T. Selective Manipulation of Endoplasmic Reticulum Mannosidase Activities Using Inhibitor as Molecular Tool. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.1826.4e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Taiki Kuribara
- Department of Materials and Life Science, Seikei University
| |
Collapse
|
14
|
Totani K. Glycoprotein Quality Control Contributed by Secondary Factors. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1928.2sj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
|
16
|
Shenkman M, Ron E, Yehuda R, Benyair R, Khalaila I, Lederkremer GZ. Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Commun Biol 2018; 1:172. [PMID: 30374462 PMCID: PMC6194124 DOI: 10.1038/s42003-018-0174-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.
Collapse
Affiliation(s)
- Marina Shenkman
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Efrat Ron
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rivka Yehuda
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ron Benyair
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Isam Khalaila
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Gerardo Z Lederkremer
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
17
|
Males A, Raich L, Williams SJ, Rovira C, Davies GJ. Conformational Analysis of the Mannosidase Inhibitor Kifunensine: A Quantum Mechanical and Structural Approach. Chembiochem 2017; 18:1496-1501. [DOI: 10.1002/cbic.201700166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Alexandra Males
- York Structural Biology Laboratory Department of Chemistry The University of York York YO10 5DD UK
| | - Lluís Raich
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Spencer J. Williams
- School of Chemistry Bio21 Molecular Science and Biotechnology Institute University of Melbourne Parkville VIC 3010 Australia
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Gideon J. Davies
- York Structural Biology Laboratory Department of Chemistry The University of York York YO10 5DD UK
| |
Collapse
|