1
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
2
|
Savchenko V, Szamosvári D, Bao Y, Pignitter M, Böttcher T. Biosynthetic flexibility of Pseudomonas aeruginosa leads to hydroxylated 2-alkylquinolones with proinflammatory host response. Commun Chem 2023; 6:138. [PMID: 37400564 DOI: 10.1038/s42004-023-00937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
The human pathogen Pseudomonas aeruginosa produces various 4(1H)-quinolones with diverse functions. Among these, 2-nonyl-4(1H)-quinolone (NQ) and its N-oxide (NQNO) belong to the main metabolites. Their biosynthesis involves substrates from the fatty acid metabolism and we hypothesized that oxidized fatty acids could be responsible for a so far undetected class of metabolites. We developed a divergent synthesis strategy for 2'-hydroxy (2'-OH) and 2'-oxo- substituted quinolones and N-oxides and demonstrated for the first time that 2'-OH-NQ and 2'-OH-NQNO but not the corresponding 2'-oxo compounds are naturally produced by PAO1 and PA14 strains of P. aeruginosa. The main metabolite 2'-OH-NQ is produced even in concentrations comparable to NQ. Exogenous availability of β-hydroxydecanoic acid can further increase the production of 2'-OH-NQ. In contrast to NQ, 2'-OH-NQ potently induced the cytokine IL-8 in a human cell line at 100 nм, suggesting a potential role in host immune modulation.
Collapse
Affiliation(s)
- Viktoriia Savchenko
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Dávid Szamosvári
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Yifan Bao
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
- Faculty of Chemistry, Institute for Physiological Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Marc Pignitter
- Faculty of Chemistry, Institute for Physiological Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Thomas Böttcher
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria.
| |
Collapse
|
3
|
Beenker WAG, Hoeksma J, Bannier-Hélaouët M, Clevers H, den Hertog J. Paecilomycone Inhibits Quorum Sensing in Gram-Negative Bacteria. Microbiol Spectr 2023; 11:e0509722. [PMID: 36920212 PMCID: PMC10100902 DOI: 10.1128/spectrum.05097-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes major health care concerns due to its virulence and high intrinsic resistance to antimicrobial agents. Therefore, new treatments are greatly needed. An interesting approach is to target quorum sensing (QS). QS regulates the production of a wide variety of virulence factors and biofilm formation in P. aeruginosa. This study describes the identification of paecilomycone as an inhibitor of QS in both Chromobacterium violaceum and P. aeruginosa. Paecilomycone strongly inhibited the production of virulence factors in P. aeruginosa, including various phenazines, and biofilm formation. In search of the working mechanism, we found that paecilomycone inhibited the production of 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), but not 2'-aminoacetophenone (2-AA). Therefore, we suggest that paecilomycone affects parts of QS in P. aeruginosa by targeting the PqsBC complex and alternative targets or alters processes that influence the enzymatic activity of the PqsBC complex. The toxicity of paecilomycone toward eukaryotic cells and organisms was low, making it an interesting lead for further clinical research. IMPORTANCE Antibiotics are becoming less effective against bacterial infections due to the evolution of resistance among bacteria. Pseudomonas aeruginosa is a Gram-negative pathogen that causes major health care concerns and is difficult to treat due to its high intrinsic resistance to antimicrobial agents. Therefore, new targets are needed, and an interesting approach is to target quorum sensing (QS). QS is the communication system in bacteria that regulates multiple pathways, including the production of virulence factors and biofilm formation, which leads to high toxicity in the host and low sensitivity to antibiotics, respectively. We found a compound, named paecilomycone, that inhibited biofilm formation and the production of various virulence factors in P. aeruginosa. The toxicity of paecilomycone toward eukaryotic cells and organisms was low, making it an interesting lead for further clinical research.
Collapse
Affiliation(s)
- Wouter A. G. Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie Bannier-Hélaouët
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Pan X, Liang H, Zhao X, Zhang Q, Chen L, Yue Z, Yin L, Jin Y, Bai F, Cheng Z, Bartlam M, Wu W. Regulatory and structural mechanisms of PvrA-mediated regulation of the PQS quorum-sensing system and PHA biosynthesis in Pseudomonas aeruginosa. Nucleic Acids Res 2023; 51:2691-2708. [PMID: 36744476 PMCID: PMC10085694 DOI: 10.1093/nar/gkad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Han Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liwen Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, Guangdong 518045, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Michalet S, Allard PM, Commun C, Ngoc VTN, Nouwade K, Gioia B, Dijoux-Franca MG, Wolfender JL, Doléans-Jordheim A. Alkyl-Quinolones derivatives as potential biomarkers for Pseudomonas aeruginosa infection chronicity in Cystic Fibrosis. Sci Rep 2021; 11:20722. [PMID: 34671079 PMCID: PMC8528811 DOI: 10.1038/s41598-021-99467-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/17/2021] [Indexed: 01/20/2023] Open
Abstract
In Cystic Fibrosis (CF), a rapid and standardized definition of chronic infection would allow a better management of Pseudomonas aeruginosa (Pa) infections, as well as a quick grouping of patients during clinical trials allowing better comparisons between studies. With this purpose, we compared the metabolic profiles of 44 in vitro cultures of Pa strains isolated from CF patients at different stages of infection in order to identify metabolites differentially synthetized according to these clinical stages. Compounds produced and secreted by each strain in the supernatant of a liquid culture were analysed by metabolomic approaches (UHPLC-DAD-ESI/QTOF, UV and UPLC-Orbitrap, MS). Multivariate analyses showed that first colonization strains could be differentiated from chronic colonization ones, by producing notably more Alkyl-Quinolones (AQs) derivatives. Especially, five AQs were discriminant: HQC5, HQNOC7, HQNOC7:1, db-PQS C9 and HQNOC9:1. However, the production of HHQ was equivalent between strain types. The HHQ/HQNOC9:1 ratio was then found to be significantly different between chronic and primo-colonising strains by using both UV (p = 0.003) and HRMS data (p = 1.5 × 10-5). Our study suggests that some AQ derivatives can be used as biomarkers for an improved management of CF patients as well as a better definition of the clinical stages of Pa infection.
Collapse
Affiliation(s)
- Serge Michalet
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Environmental Multiresistance and Bacterial Efflux, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Pierre-Marie Allard
- grid.8591.50000 0001 2322 4988School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneve 4, Switzerland
| | - Carine Commun
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Bacterial Opportunistic Pathogens and Environment, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Van Thanh Nguyen Ngoc
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Environmental Multiresistance and Bacterial Efflux, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Kodjo Nouwade
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Environmental Multiresistance and Bacterial Efflux, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Bruna Gioia
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,EA 4446, Molécules bioactives et chimie médicinale (B2MC), ISPB-Faculté de Pharmacie, Lyon, France
| | - Marie-Geneviève Dijoux-Franca
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Environmental Multiresistance and Bacterial Efflux, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Jean-Luc Wolfender
- grid.8591.50000 0001 2322 4988School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneve 4, Switzerland
| | - Anne Doléans-Jordheim
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Bacterial Opportunistic Pathogens and Environment, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France ,grid.413852.90000 0001 2163 3825Laboratoire de Bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
Abstract
Microbes are hardly seen as planktonic species and are most commonly found as biofilm communities in cases of chronic infections. Biofilms are regarded as a biological condition, where a large group of microorganisms gets adhered to a biotic or abiotic surface. In this context, Pseudomonas aeruginosa, a Gram-negative nosocomial pathogen is the main causative organism responsible for life-threatening and persistent infections in individuals affected with cystic fibrosis and other lung ailments. The bacteria can form a strong biofilm structure when it adheres to a surface suitable for the development of a biofilm matrix. These bacterial biofilms pose higher natural resistance to conventional antibiotic therapy due to their multiple tolerance mechanisms. This prevailing condition has led to an increasing rate of treatment failures associated with P. aeruginosa biofilm infections. A better understanding of the effect of a diverse group of antibiotics on established biofilms would be necessary to avoid inappropriate treatment strategies. Hence, the search for other alternative strategies as effective biofilm treatment options has become a growing area of research. The current review aims to give an overview of the mechanisms governing biofilm formation and the different strategies employed so far in the control of biofilm infections caused by P. aeruginosa. Moreover, this review can also help researchers to search for new antibiofilm agents to tackle the effect of biofilm infections that are currently imprudent to conventional antibiotics.
Collapse
|
7
|
Biological and clinical significance of quorum sensing alkylquinolones: current analytical and bioanalytical methods for their quantification. Anal Bioanal Chem 2021; 413:4599-4618. [PMID: 33959788 DOI: 10.1007/s00216-021-03356-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/21/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022]
Abstract
Quorum sensing (QS) is a sophisticated bacterial communication system which plays a key role in the virulence and biofilm formation of many pathogens. The Pseudomonas aeruginosa QS network consists of four sets of connected systems (las, rlh, pqs and iqs) hierarchically organized. The pqs system involves characteristic autoinducers (AI), most of them sharing an alkylquinolone (AQ) structure, and is able to carry out several relevant biological functions besides its main signalling activity. Their role in bacterial physiology and pathogenicity has been widely studied. Indeed, the presence of these metabolites in several body fluids and infected tissues has pointed to their potential value as biomarkers of infection. In this review, we summarize the most recent findings about the biological implications and the clinical significance of the main P. aeruginosa AQs. These findings have encouraged the development of analytical and bioanalytical techniques addressed to assess the role of these metabolites in bacterial growth and survival, during pathogenesis or as biomarkers of infections. The availability of highly sensitive reliable analytical methods suitable for clinical analysis would allow getting knowledge about pathogenesis and disease prognosis or progression, supporting clinicians on the decision-making process for the management of these infections and guiding them on the application of more effective and appropriate treatments. The benefits from the implementation of the point-of-care (PoC)-type testing in infectious disease diagnostics, which are seen to improve patient outcomes by promoting earlier therapeutic interventions, are also discussed.
Collapse
|
8
|
Szamosvári D, Prothiwa M, Dieterich CL, Böttcher T. Profiling structural diversity and activity of 2-alkyl-4(1H)-quinolone N-oxides of Pseudomonas and Burkholderia. Chem Commun (Camb) 2021; 56:6328-6331. [PMID: 32436549 DOI: 10.1039/d0cc02498h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We synthesized all major saturated and unsaturated 2-alkyl-4(1H)-quinolone N-oxides of Pseudomonas and Burkholderia, quantified their native production levels and characterized their antibiotic activities against competing Staphylococcus aureus. We demonstrate that quinolone core methylation and position of unsaturation in the alkyl-chain dictate antibiotic potency which supports the proposed mechanism of action.
Collapse
Affiliation(s)
- Dávid Szamosvári
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany.
| | - Michaela Prothiwa
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany.
| | - Cora Lisbeth Dieterich
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany.
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany. and Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
9
|
Mobilization of Iron Stored in Bacterioferritin Is Required for Metabolic Homeostasis in Pseudomonas aeruginosa. Pathogens 2020; 9:pathogens9120980. [PMID: 33255203 PMCID: PMC7760384 DOI: 10.3390/pathogens9120980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Iron homeostasis offers a significant bacterial vulnerability because pathogens obtain essential iron from their mammalian hosts, but host-defenses maintain vanishingly low levels of free iron. Although pathogens have evolved mechanisms to procure host-iron, these depend on well-regulated iron homeostasis. To disrupt iron homeostasis, our work has targeted iron mobilization from the iron storage protein bacterioferritin (BfrB) by blocking a required interaction with its cognate ferredoxin partner (Bfd). The blockade of the BfrB–Bfd complex by deletion of the bfd gene (Δbfd) causes iron to irreversibly accumulate in BfrB. In this study we used mass spectrometry and NMR spectroscopy to compare the proteomic response and the levels of key intracellular metabolites between wild type (wt) and isogenic ΔbfdP. aeruginosa strains. We find that the irreversible accumulation of unusable iron in BfrB leads to acute intracellular iron limitation, even if the culture media is iron-sufficient. Importantly, the iron limitation and concomitant iron metabolism dysregulation trigger a cascade of events that lead to broader metabolic homeostasis disruption, which includes sulfur limitation, phenazine-mediated oxidative stress, suboptimal amino acid synthesis and altered carbon metabolism.
Collapse
|
10
|
The Peptide Chain Release Factor Methyltransferase PrmC Influences the Pseudomonas aeruginosa PA14 Endo- and Exometabolome. Metabolites 2020; 10:metabo10100417. [PMID: 33080992 PMCID: PMC7650828 DOI: 10.3390/metabo10100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most important nosocomial pathogens and understanding its virulence is the key to effective control of P. aeruginosa infections. The regulatory network governing virulence factor production in P. aeruginosa is exceptionally complex. Previous studies have shown that the peptide chain release factor methyltransferase PrmC plays an important role in bacterial pathogenicity. Yet, the underlying molecular mechanism is incompletely understood. In this study, we used untargeted liquid and gas chromatography coupled to mass spectrometry to characterise the metabolome of a prmC defective P. aeruginosa PA14 strain in comparison with the corresponding strain complemented with prmC in trans. The comprehensive metabolomics data provided new insight into the influence of prmC on virulence and metabolism. prmC deficiency had broad effects on the endo- and exometabolome of P. aeruginosa PA14, with a marked decrease of the levels of aromatic compounds accompanied by reduced precursor supply from the shikimate pathway. Furthermore, a pronounced decrease of phenazine production was observed as well as lower abundance of alkylquinolones. Unexpectedly, the metabolomics data showed no prmC-dependent effect on rhamnolipid production and an increase in pyochelin levels. A putative virulence biomarker identified in a previous study was significantly less abundant in the prmC deficient strain.
Collapse
|
11
|
Depke T, Thöming JG, Kordes A, Häussler S, Brönstrup M. Untargeted LC-MS Metabolomics Differentiates Between Virulent and Avirulent Clinical Strains of Pseudomonas aeruginosa. Biomolecules 2020; 10:biom10071041. [PMID: 32668735 PMCID: PMC7407980 DOI: 10.3390/biom10071041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is a facultative pathogen that can cause, inter alia, acute or chronic pneumonia in predisposed individuals. The gram-negative bacterium displays considerable genomic and phenotypic diversity that is also shaped by small molecule secondary metabolites. The discrimination of virulence phenotypes is highly relevant to the diagnosis and prognosis of P. aeruginosa infections. In order to discover small molecule metabolites that distinguish different virulence phenotypes of P. aeruginosa, 35 clinical strains were cultivated under standard conditions, characterized in terms of virulence and biofilm phenotype, and their metabolomes were investigated by untargeted liquid chromatography-mass spectrometry. The data was both mined for individual candidate markers as well as used to construct statistical models to infer the virulence phenotype from metabolomics data. We found that clinical strains that differed in their virulence and biofilm phenotype also had pronounced divergence in their metabolomes, as underlined by 332 features that were significantly differentially abundant with fold changes greater than 1.5 in both directions. Important virulence-associated secondary metabolites like rhamnolipids, alkyl quinolones or phenazines were found to be strongly upregulated in virulent strains. In contrast, we observed little change in primary metabolism. A hitherto novel cationic metabolite with a sum formula of C12H15N2 could be identified as a candidate biomarker. A random forest model was able to classify strains according to their virulence and biofilm phenotype with an area under the Receiver Operation Characteristics curve of 0.84. These findings demonstrate that untargeted metabolomics is a valuable tool to characterize P. aeruginosa virulence, and to explore interrelations between clinically important phenotypic traits and the bacterial metabolome.
Collapse
Affiliation(s)
- Tobias Depke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Janne Gesine Thöming
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
| | - Adrian Kordes
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
| | - Susanne Häussler
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
12
|
Ritzmann NH, Mährlein A, Ernst S, Hennecke U, Drees SL, Fetzner S. Bromination of alkyl quinolones by Microbulbifer sp. HZ11, a marine Gammaproteobacterium, modulates their antibacterial activity. Environ Microbiol 2019; 21:2595-2609. [PMID: 31087606 DOI: 10.1111/1462-2920.14654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023]
Abstract
Alkyl quinolones (AQs) are multifunctional bacterial secondary metabolites generally known for their antibacterial and algicidal properties. Certain representatives are also employed as signalling molecules of Burkholderia strains and Pseudomonas aeruginosa. The marine Gammaproteobacterium Microbulbifer sp. HZ11 harbours an AQ biosynthetic gene cluster with unusual topology but does not produce any AQ-type metabolites under laboratory conditions. In this study, we demonstrate the potential of strain HZ11 for AQ production by analysing intermediates and key enzymes of the pathway. Moreover, we demonstrate that exogenously added AQs such as 2-heptyl-1(H)-quinolin-4-one (referred to as HHQ) or 2-heptyl-1-hydroxyquinolin-4-one (referred to as HQNO) are brominated by a vanadium-dependent haloperoxidase (V-HPOHZ11 ), which preferably is active towards AQs with C5-C9 alkyl side chains. Bromination was specific for the third position and led to 3-bromo-2-heptyl-1(H)-quinolin-4-one (BrHHQ) and 3-bromo-2-heptyl-1-hydroxyquinolin-4-one (BrHQNO), both of which were less toxic for strain HZ11 than the respective parental compounds. In contrast, BrHQNO showed increased antibiotic activity against Staphylococcus aureus and marine isolates. Therefore, bromination of AQs by V-HPOHZ11 can have divergent consequences, eliciting a detoxifying effect for strain HZ11 while simultaneously enhancing antibiotic activity against other bacteria.
Collapse
Affiliation(s)
- Niklas H Ritzmann
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Almuth Mährlein
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Simon Ernst
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Ulrich Hennecke
- Organic Chemistry Institute, University of Münster, Münster, Germany.,Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Steffen L Drees
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2015978. [PMID: 31080810 PMCID: PMC6475571 DOI: 10.1155/2019/2015978] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
Bacterial quorum sensing (QS) is a cell-to-cell communication in which specific signals are activated to coordinate pathogenic behaviors and help bacteria acclimatize to the disadvantages. The QS signals in the bacteria mainly consist of acyl-homoserine lactone, autoinducing peptide, and autoinducer-2. QS signaling activation and biofilm formation lead to the antimicrobial resistance of the pathogens, thus increasing the therapy difficulty of bacterial diseases. Anti-QS agents can abolish the QS signaling and prevent the biofilm formation, therefore reducing bacterial virulence without causing drug-resistant to the pathogens, suggesting that anti-QS agents are potential alternatives for antibiotics. This review focuses on the anti-QS agents and their mediated signals in the pathogens and conveys the potential of QS targeted therapy for bacterial diseases.
Collapse
Affiliation(s)
- Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, Beijing 100043, China
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Jiashun Chen
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, China
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, China
| |
Collapse
|
14
|
Schütz C, Empting M. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein J Org Chem 2018; 14:2627-2645. [PMID: 30410625 PMCID: PMC6204780 DOI: 10.3762/bjoc.14.241] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa causes severe nosocomial infections. It uses quorum sensing (QS) to regulate and coordinate population-wide group behaviours in the infection process like concerted secretion of virulence factors. One very important signalling network is the Pseudomonas quinolone signal (PQS) QS. With the aim to devise novel and innovative anti-infectives, inhibitors have been designed to address the various potential drug targets present within pqs QS. These range from enzymes within the biosynthesis cascade of the signal molecules PqsABCDE to the receptor of these autoinducers PqsR (MvfR). This review shortly introduces P. aeruginosa and its pathogenicity traits regulated by the pqs system and highlights the published drug discovery efforts providing insights into the compound binding modes if available. Furthermore, suitability of the individual targets for pathoblocker design is discussed.
Collapse
Affiliation(s)
- Christian Schütz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrücken, Germany
| |
Collapse
|