1
|
Chen YH, Cheng WH. Hexosamine biosynthesis and related pathways, protein N-glycosylation and O-GlcNAcylation: their interconnection and role in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1349064. [PMID: 38510444 PMCID: PMC10951099 DOI: 10.3389/fpls.2024.1349064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
N-Acetylglucosamine (GlcNAc), a fundamental amino sugar moiety, is essential for protein glycosylation, glycolipid, GPI-anchor protein, and cell wall components. Uridine diphosphate-GlcNAc (UDP-GlcNAc), an active form of GlcNAc, is synthesized through the hexosamine biosynthesis pathway (HBP). Although HBP is highly conserved across organisms, the enzymes involved perform subtly distinct functions among microbes, mammals, and plants. A complete block of HBP normally causes lethality in any life form, reflecting the pivotal role of HBP in the normal growth and development of organisms. Although HBP is mainly composed of four biochemical reactions, HBP is exquisitely regulated to maintain the homeostasis of UDP-GlcNAc content. As HBP utilizes substrates including fructose-6-P, glutamine, acetyl-CoA, and UTP, endogenous nutrient/energy metabolites may be integrated to better suit internal growth and development, and external environmental stimuli. Although the genes encoding HBP enzymes are well characterized in microbes and mammals, they were less understood in higher plants in the past. As the HBP-related genes/enzymes have largely been characterized in higher plants in recent years, in this review we update the latest advances in the functions of the HBP-related genes in higher plants. In addition, HBP's salvage pathway and GlcNAc-mediated two major co- or post-translational modifications, N-glycosylation and O-GlcNAcylation, are also included in this review. Further knowledge on the function of HBP and its product conjugates, and the mechanisms underlying their response to deleterious environments might provide an alternative strategy for agricultural biofortification in the future.
Collapse
Affiliation(s)
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Jia X, Zhang H, Qin H, Li K, Liu X, Wang W, Ye M, Yin H. Protein O-GlcNAcylation impairment caused by N-acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:613-635. [PMID: 36799458 DOI: 10.1111/tpj.16156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/10/2023]
Abstract
As an essential enzyme in the uridine diphosphate (UDP)-GlcNAc biosynthesis pathway, the significant role of N-acetylglucosamine phosphate mutase (AGM) remains unknown in plants. In the present study, a functional plant AGM (AtAGM) was identified from Arabidopsis thaliana. AtAGM catalyzes the isomerization of GlcNAc-1-P and GlcNAc-6-P, and has broad catalytic activity on different phosphohexoses. UDP-GlcNAc contents were significantly decreased in AtAGM T-DNA insertional mutants, which caused temperature-dependent growth defects in seedlings and vigorous growth in adult plants. Further analysis revealed that protein O-GlcNAcylation but not N-glycosylation was dramatically impaired in Atagm mutants due to UDP-GlcNAc shortage. Combined with the results from O-GlcNAcylation or N-glycosylation deficient mutants, and O-GlcNAcase inhibitor all suggested that protein O-GlcNAcylation impairment mainly leads to the phenotypic variations of Atagm plants. In conclusion, based on the essential role in UDP-GlcNAc biosynthesis, AtAGM is important for plant growth mainly via protein O-GlcNAcylation-level regulation.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongyan Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
3
|
Jackson EG, Cutolo G, Yang B, Yarravarapu N, Burns MWN, Bineva-Todd G, Roustan C, Thoden JB, Lin-Jones HM, van Kuppevelt TH, Holden HM, Schumann B, Kohler JJ, Woo CM, Pratt MR. 4-Deoxy-4-fluoro-GalNAz (4FGalNAz) Is a Metabolic Chemical Reporter of O-GlcNAc Modifications, Highlighting the Notable Substrate Flexibility of O-GlcNAc Transferase. ACS Chem Biol 2022; 17:159-170. [PMID: 34931806 PMCID: PMC8787749 DOI: 10.1021/acschembio.1c00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Bio-orthogonal chemistries
have revolutionized many fields. For
example, metabolic chemical reporters (MCRs) of glycosylation are
analogues of monosaccharides that contain a bio-orthogonal functionality,
such as azides or alkynes. MCRs are metabolically incorporated into
glycoproteins by living systems, and bio-orthogonal reactions can
be subsequently employed to install visualization and enrichment tags.
Unfortunately, most MCRs are not selective for one class of glycosylation
(e.g., N-linked vs O-linked), complicating the types of information
that can be gleaned. We and others have successfully created MCRs
that are selective for intracellular O-GlcNAc modification by altering
the structure of the MCR and thus biasing it to certain metabolic
pathways and/or O-GlcNAc transferase (OGT). Here, we attempt to do
the same for the core GalNAc residue of mucin O-linked glycosylation.
The most widely applied MCR for mucin O-linked glycosylation, GalNAz,
can be enzymatically epimerized at the 4-hydroxyl to give GlcNAz.
This results in a mixture of cell-surface and O-GlcNAc labeling. We
reasoned that replacing the 4-hydroxyl of GalNAz with a fluorine would
lock the stereochemistry of this position in place, causing the MCR
to be more selective. After synthesis, we found that 4FGalNAz labels
a variety of proteins in mammalian cells and does not perturb endogenous
glycosylation pathways unlike 4FGalNAc. However, through subsequent
proteomic and biochemical characterization, we found that 4FGalNAz
does not widely label cell-surface glycoproteins but instead is primarily
a substrate for OGT. Although these results are somewhat unexpected,
they once again highlight the large substrate flexibility of OGT,
with interesting and important implications for intracellular protein
modification by a potential range of abiotic and native monosaccharides.
Collapse
Affiliation(s)
- Emma G. Jackson
- Departments of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Giuliano Cutolo
- Departments of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nageswari Yarravarapu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Mary W. N. Burns
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Chloë Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - James B. Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Halley M. Lin-Jones
- Departments of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen The Netherlands
| | - Hazel M. Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Department of Chemistry, Imperial College London, W120BZ London, United Kingdom
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew R. Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Huxley KE, Willems LI. Chemical reporters to study mammalian O-glycosylation. Biochem Soc Trans 2021; 49:903-913. [PMID: 33860782 PMCID: PMC8106504 DOI: 10.1042/bst20200839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Glycans play essential roles in a range of cellular processes and have been shown to contribute to various pathologies. The diversity and dynamic nature of glycan structures and the complexities of glycan biosynthetic pathways make it challenging to study the roles of specific glycans in normal cellular function and disease. Chemical reporters have emerged as powerful tools to characterise glycan structures and monitor dynamic changes in glycan levels in a native context. A variety of tags can be introduced onto specific monosaccharides via the chemical modification of endogenous glycan structures or by metabolic or enzymatic incorporation of unnatural monosaccharides into cellular glycans. These chemical reporter strategies offer unique opportunities to study and manipulate glycan functions in living cells or whole organisms. In this review, we discuss recent advances in metabolic oligosaccharide engineering and chemoenzymatic glycan labelling, focusing on their application to the study of mammalian O-linked glycans. We describe current barriers to achieving glycan labelling specificity and highlight innovations that have started to pave the way to overcome these challenges.
Collapse
Affiliation(s)
- Kathryn E. Huxley
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| |
Collapse
|
5
|
Glycoengineering: scratching the surface. Biochem J 2021; 478:703-719. [DOI: 10.1042/bcj20200612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
At the surface of many cells is a compendium of glycoconjugates that form an interface between the cell and its surroundings; the glycocalyx. The glycocalyx serves several functions that have captivated the interest of many groups. Given its privileged residence, this meshwork of sugar-rich biomolecules is poised to transmit signals across the cellular membrane, facilitating communication with the extracellular matrix and mediating important signalling cascades. As a product of the glycan biosynthetic machinery, the glycocalyx can serve as a partial mirror that reports on the cell's glycosylation status. The glycocalyx can also serve as an information-rich barrier, withholding the entry of pathogens into the underlying plasma membrane through glycan-rich molecular messages. In this review, we provide an overview of the different approaches devised to engineer glycans at the cell surface, highlighting considerations of each, as well as illuminating the grand challenges that face the next era of ‘glyco-engineers’. While we have learned much from these techniques, it is evident that much is left to be unearthed.
Collapse
|
6
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun 2020; 11:687. [PMID: 32019926 PMCID: PMC7000685 DOI: 10.1038/s41467-020-14524-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5′-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies. Mutations in the hexosamine pathway key enzyme glutamine fructose-6-phosphate amidotransferase (GFAT-1) improve protein quality control and extend C. elegans lifespan. Here the authors present the crystal structures of full-length human GFAT-1 alone and with bound ligands and perform activity assays, which show that gain-of-function in the longevity-associated G451E variant is caused by a loss of feedback regulation.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.,University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany
| | - Moritz Horn
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Christian Pichlo
- University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany
| | - Kira Allmeroth
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Ulrich Baumann
- University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany.
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany. .,CECAD-Cluster of Excellence, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|