1
|
Mechetin GV, Zharkov DO. DNA Damage Response and Repair in Boron Neutron Capture Therapy. Genes (Basel) 2023; 14:127. [PMID: 36672868 PMCID: PMC9859301 DOI: 10.3390/genes14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an approach to the radiotherapy of solid tumors that was first outlined in the 1930s but has attracted considerable attention recently with the advent of a new generation of neutron sources. In BNCT, tumor cells accumulate 10B atoms that react with epithermal neutrons, producing energetic α particles and 7Li atoms that damage the cell's genome. The damage inflicted by BNCT appears not to be easily repairable and is thus lethal for the cell; however, the molecular events underlying the action of BNCT remain largely unaddressed. In this review, the chemistry of DNA damage during BNCT is outlined, the major mechanisms of DNA break sensing and repair are summarized, and the specifics of the repair of BNCT-induced DNA lesions are discussed.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Biechele-Speziale DJ, Sutton TB, Delaney S. Obstacles and opportunities for base excision repair in chromatin. DNA Repair (Amst) 2022; 116:103345. [PMID: 35689883 PMCID: PMC9253077 DOI: 10.1016/j.dnarep.2022.103345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Abstract
Most eukaryotic DNA is packaged into chromatin, which is made up of tandemly repeating nucleosomes. This packaging of DNA poses a significant barrier to the various enzymes that must act on DNA, including DNA damage response enzymes that interact intimately with DNA to prevent mutations and cell death. To regulate access to certain DNA regions, chromatin remodeling, variant histone exchange, and histone post-translational modifications have been shown to assist several DNA repair pathways including nucleotide excision repair, single strand break repair, and double strand break repair. While these chromatin-level responses have been directly linked to various DNA repair pathways, how they modulate the base excision repair (BER) pathway remains elusive. This review highlights recent findings that demonstrate how BER is regulated by the packaging of DNA into nucleosome core particles (NCPs) and higher orders of chromatin structures. We also summarize the available data that indicate BER may be enabled by chromatin modifications and remodeling.
Collapse
Affiliation(s)
| | | | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Ren M, Greenberg MM, Zhou C. Participation of Histones in DNA Damage and Repair within Nucleosome Core Particles: Mechanism and Applications. Acc Chem Res 2022; 55:1059-1073. [PMID: 35271268 PMCID: PMC8983524 DOI: 10.1021/acs.accounts.2c00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA is damaged by various endogenous and exogenous sources, leading to a diverse group of reactive intermediates that yield a complex mixture of products. The initially formed products are often metastable and can react to yield lesions that are more biologically deleterious. Mechanistic studies are frequently carried out on free DNA as the substrate. The observations do not necessarily reflect the reaction environment inside human cells where genomic DNA is condensed as chromatin in the nucleus. Chromatin is made up of monomeric structural units called nucleosomes, which are comprised of DNA wrapped around an octameric core of histone proteins (two copies each of histones H2A, H2B, H3, and H4).This account presents a summary of our work in the past decade on the mechanistic studies of DNA damage and repair in reconstituted nucleosome core particles (NCPs). A series of metastable lesions and reactive intermediates, such as abasic sites (AP), N7-methyl-2'-deoxyguanosine (MdG), and 2'-deoxyadenosin-N6-yl radical (dA•), have been independently generated in a site-specific manner in bottom-up-synthesized NCPs. Detailed mechanistic studies on these NCPs revealed that histones actively participate in DNA damage and repair processes in diverse ways. For instance, nucleophilic residues in the flexible histone N-terminal tails, such as Lys and N-terminal α-amine, react with electrophilic DNA damage and reactive intermediates. In some cases, transient intermediates are produced, leading to the promotion or suppression of damage and repair processes. In other examples, reactions with histones yield reversible or stable DNA-protein cross-links (DPCs). Histones also utilize acidic and basic residues, such as histidine and aspartic acid, to catalyze DNA strand cleavage through general acid/base catalysis. Alternatively, a Tyr in histone plays a vital role in nucleosomal DNA damage and repair via radical transfer. Finally, the reactivity discovered during the mechanistic studies has facilitated the development of new reagents and methods with applications in biotechnology.This research has enriched our knowledge of the roles of histone proteins in DNA damage and repair and their contributions to epigenetics and may have significant biological implications. The residues in histone N-terminal tails that react with DNA lesions also play pivotal roles in regulating the structure and function of chromatin, indicating that there may be cross-talk between DNA damage and repair in eukaryotic cells and epigenetic regulation. Also, in view of the biased amino acid composition of histones, these results provide hints about how the proteins have evolved to minimize their deleterious effects but maximize beneficial ones for maintaining genome integrity. Finally, previously unreported DPCs and histone post-translational modifications have been discovered through this research. The effects of these newly identified lesions on the structure and function of chromatin and their fates inside cells remain to be elucidated.
Collapse
Affiliation(s)
- Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Ukraintsev AA, Belousova EA, Kutuzov MM, Lavrik OI. Study of Interaction of the PARP Family DNA-Dependent Proteins with Nucleosomes Containing DNA Intermediates of the Initial Stages of BER Process. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:331-345. [PMID: 35527371 DOI: 10.1134/s0006297922040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reaction of (ADP-ribosyl)ation catalyzed by DNA-dependent proteins of the poly(ADP-ribose)polymerase (PARP) family, PARP1, PARP2, and PARP3, comprises the cellular response to DNA damage. These proteins are involved in the base excision repair (BER) process. Despite the extensive research, it remains unknown how PARPs are involved in the regulation of the BER process and how the roles are distributed between the DNA-dependent members of the PARP family. Here, we investigated the interaction of the PARP's family DNA-dependent proteins with nucleosome core particles containing DNA intermediates of the initial stages of BER. To do that, the nucleosomes containing damage in the vicinity of one of the DNA duplex blunt ends were reconstituted based on the Widom's Clone 603 DNA sequence. Dissociation constants of the PARP complexes with nucleosomes bearing DNA contained uracil (Native), apurine/apyrimidine site (AP site), or a single-nucleotide gap with 5'-dRp fragment (Gap) were determined. It was shown that the affinity of the proteins for the nucleosomes increased in the row: PARP3<<PARP2<PARP1; whereas the affinity of each protein for the certain damage type increased in the row: Native = AP site < Gap for PARP1 and PARP2, Gap<<<Native = AP site for PARP3. The interaction regions of each PARP protein with nucleosome were also determined by sodium borohydride cross-linking and footprinting assay. Based on the obtained and published data, the involvement pattern of the PARP1, PARP2, and PARP3 into the interaction with nucleosome particles containing DNA intermediates of the BER process was discussed.
Collapse
Affiliation(s)
- Alexander A Ukraintsev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Ekaterina A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Wei X, Wang Z, Hinson C, Yang K. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3638-3657. [PMID: 35349719 PMCID: PMC9023300 DOI: 10.1093/nar/gkac185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Caroline Hinson
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kun Yang
- To whom correspondence should be addressed. Tel: +1 512 471 4843;
| |
Collapse
|
6
|
Bignon E, Gillet N, Jiang T, Morell C, Dumont E. A Dynamic View of the Interaction of Histone Tails with Clustered Abasic Sites in a Nucleosome Core Particle. J Phys Chem Lett 2021; 12:6014-6019. [PMID: 34165307 DOI: 10.1021/acs.jpclett.1c01058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apurinic/apyrimidinic sites are the most common forms of DNA damage under physiological conditions, yet their structural and dynamical behavior within nucleosome core particles has just begun to be investigated and is dramatically different from that of abasic sites in B-DNA. Clusters of two or more abasic sites are repaired even less efficiently and hence constitute hot spots of high mutagenicity notably due to enhanced double-strand break formation. On the basis of an X-ray structure of a 146 bp DNA wrapped onto a histone core, we investigate the structural behavior of two bistranded abasic sites positioned at mutational hot spots during microsecond-range molecular dynamics simulations. Our simulations allow us to probe interactions of histone tails at clustered abasic site locations, with a definitive assignment of the key residues involved in the NCP-catalyzed formation of DNA-protein cross-linking in line with recent experimental findings, and pave the way for a systematic assessment of the response of histone tails to DNA lesions.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Natacha Gillet
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
| | - Tao Jiang
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
| | - Christophe Morell
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Elise Dumont
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| |
Collapse
|
7
|
Bignon E, Claerbout VEP, Jiang T, Morell C, Gillet N, Dumont E. Nucleosomal embedding reshapes the dynamics of abasic sites. Sci Rep 2020; 10:17314. [PMID: 33057206 PMCID: PMC7560594 DOI: 10.1038/s41598-020-73997-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France. .,Institut des Sciences Analytiques, UMR 5280, Université de Lyon 1 (UCBL) CNRS, Lyon, France.
| | - Victor E P Claerbout
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Tao Jiang
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Christophe Morell
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon 1 (UCBL) CNRS, Lyon, France
| | - Natacha Gillet
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Elise Dumont
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France. .,Institut Universitaire de France, 5 rue Descartes, 75005, Paris, France.
| |
Collapse
|
8
|
Yang K, Prasse C, Greenberg MM. Effect of Histone Lysine Methylation on DNA Lesion Reactivity in Nucleosome Core Particles. Chem Res Toxicol 2019; 32:910-916. [PMID: 30916939 DOI: 10.1021/acs.chemrestox.9b00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysine methylation is a common post-translational histone modification that regulates transcription and gene expression. The lysine residues in the histone tail also react with damaged nucleotides in chromatin, including abasic sites and N7-methyl-2'-deoxyguanosine, the major product of DNA methylating agents. Lysine monomethylation transforms the ε-amine into a secondary amine, which could be more nucleophilic and/or basic than the ε-amine in lysine, and therefore more reactive with damaged DNA. The effect of lysine methylation on the reactivity with abasic sites and N7-methyl-2'-deoxyguanosine was examined in nucleosome core particles using a methylated lysine analogue derived from cysteine. ε-Amine methylation increases the rate constant for abasic site reaction within nucleosome core particles. Reactivity at the two positions examined increased less than twofold. Mechanistic experiments indicate that faster β-elimination from an intermediate iminium ion accounts for accelerated abasic reactivity. The rate constants for nucleophilic attack (Schiff base/iminium ion formation) by the lysine and methylated lysine analogues are indistinguishable. Similarly, the rate constants describing nucleophilic attack by the lysine and methylated lysine analogues on β-2'-fluoro-N7-methyl-2'-deoxyguanosine to form DNA-protein cross-links are also within experimental error of one another. These data indicate that abasic site containing DNA will be destabilized by lysine methylation. However, these experiments do not indicate that DNA-protein cross-link formation, a recently discovered form of damage resulting from N7-guanine methylation, will be affected by this post-translational modification.
Collapse
Affiliation(s)
- Kun Yang
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Carsten Prasse
- Department of Environmental Health and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
9
|
Wang Y, Zhao H, Yang C, Jie J, Dai X, Zhou Q, Liu K, Song D, Su H. Degradation of Cytosine Radical Cations in 2′-Deoxycytidine and in i-Motif DNA: Hydrogen-Bonding Guided Pathways. J Am Chem Soc 2019; 141:1970-1979. [DOI: 10.1021/jacs.8b10743] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yinghui Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaojuan Dai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qian Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Kunhui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Di Song
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|