1
|
Sun S, Li Y, Wang W, Kou S, Huo J, An Z, Zhu L, Li K, Chen L, Zhang J. Discovery of novel Propionamide-Pyrazole-Carboxylates as Transketolase-inhibiting herbicidal candidates. PEST MANAGEMENT SCIENCE 2024; 80:4897-4905. [PMID: 38808579 DOI: 10.1002/ps.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Transketolase (TKL, EC 2.2.1.1) is a key enzyme in the pentose phosphate pathway and Calvin cycle, and is expected to act as a herbicidal site-of-action. On the basis of TKL, we designed and synthesized a series of 1-oxy-propionamide-pyrazole-3-carboxylate analogues and evaluated their herbicidal activities. RESULTS Methyl 1-methyl-5-((1-oxo-1-((4-(trifluoromethyl)phenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C23) and methyl 1-methyl-5-((1-oxo-1-((perfluorophenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C33) were found to provide better growth-inhibition activities against Digitaria sanguinalis root than those of nicosulfuron, mesotrione and pretilachlor at 200 mg L-1 using the small-cup method. These compounds were also identified as promising compounds in pre-emergence and postemergence herbicidal-activity experiments, with relatively good inhibitory effects toward Amaranthus retroflexus and D. sanguinalis at 150 g ai ha-1. In addition, enzyme inhibition assays and molecular docking studies revealed that C23 and C33 interact favourably with SvTKL (Setaria viridis TKL). CONCLUSION C23 and C33 are promising lead TKL inhibitors for the optimization of new herbicides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Yaze Li
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Wenfei Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jinqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Lin Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Kaiwen Li
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| |
Collapse
|
2
|
Prajapati S, Rabe von Pappenheim F, Tittmann K. Frontiers in the enzymology of thiamin diphosphate-dependent enzymes. Curr Opin Struct Biol 2022; 76:102441. [PMID: 35988322 DOI: 10.1016/j.sbi.2022.102441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Enzymes that use thiamin diphosphate (ThDP), the biologically active derivative of vitamin B1, as a cofactor play important roles in cellular metabolism in all domains of life. The analysis of ThDP enzymes in the past decades have provided a general framework for our understanding of enzyme catalysis of this protein family. In this review, we will discuss recent advances in the field that include the observation of "unusual" reactions and reaction intermediates that highlight the chemical versatility of the thiamin cofactor. Further topics cover the structural basis of cooperativity of ThDP enzymes, novel insights into the mechanism and structure of selected enzymes, and the discovery of "superassemblies" as reported, for example, acetohydroxy acid synthase. Finally, we summarize recent findings in the structural organisation and mode of action of 2-keto acid dehydrogenase multienzyme complexes and discuss future directions of this exciting research field.
Collapse
Affiliation(s)
- Sabin Prajapati
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany; Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany.
| | - Fabian Rabe von Pappenheim
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany; Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany.
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany; Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
3
|
Lin KH, Lyu SY, Yeh HW, Li YS, Hsu NS, Huang CM, Wang YL, Shih HW, Wang ZC, Wu CJ, Li TL. Structural and chemical trapping of flavin-oxide intermediates reveals substrate-directed reaction multiplicity. Protein Sci 2020; 29:1655-1666. [PMID: 32362037 PMCID: PMC7314388 DOI: 10.1002/pro.3879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Abstract
Though reactive flavin‐N5/C4α‐oxide intermediates can be spectroscopically profiled for some flavin‐assisted enzymatic reactions, their exact chemical configurations are hardly visualized. Structural systems biology and stable isotopic labelling techniques were exploited to correct this stereotypical view. Three transition‐like complexes, the α‐ketoacid…N5‐FMNox complex (I), the FMNox‐N5‐aloxyl‐C′α−‐C4α+ zwitterion (II), and the FMN‐N5‐ethenol‐N5‐C4α‐epoxide (III), were determined from mandelate oxidase (Hmo) or its mutant Y128F (monooxygenase) crystals soaked with monofluoropyruvate (a product mimic), establishing that N5 of FMNox an alternative reaction center can polarize to an ylide‐like mesomer in the active site. In contrast, four distinct flavin‐C4α‐oxide adducts (IV–VII) from Y128F crystals soaked with selected substrates materialize C4α of FMN an intrinsic reaction center, witnessing oxidation, Baeyer–Villiger/peroxide‐assisted decarboxylation, and epoxidation reactions. In conjunction with stopped‐flow kinetics, the multifaceted flavin‐dependent reaction continuum is physically dissected at molecular level for the first time. PDB Code(s): 5ZZT, 6A24, 6A1W, 6A01, 6A1N, 6A1B, 6A0B, 6A36, 6A4H, 6A4G, 6A3D, and 7BSR
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,The Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Syue-Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsien-Wei Yeh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Man Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hao-Wei Shih
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zhe-Chong Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
4
|
Lorillière M, Dumoulin R, L’enfant M, Rambourdin A, Thery V, Nauton L, Fessner WD, Charmantray F, Hecquet L. Evolved Thermostable Transketolase for Stereoselective Two-Carbon Elongation of Non-Phosphorylated Aldoses to Naturally Rare Ketoses. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marion Lorillière
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Romain Dumoulin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Mélanie L’enfant
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Agnès Rambourdin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Hsu N, Wang Y, Lin K, Chang C, Ke S, Lyu S, Hsu L, Li Y, Chen S, Wang K, Li T. Evidence of Diradicals Involved in the Yeast Transketolase Catalyzed Keto-Transferring Reactions. Chembiochem 2018; 19:2395-2402. [PMID: 30155962 PMCID: PMC6282555 DOI: 10.1002/cbic.201800378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 11/12/2022]
Abstract
Transketolase (TK) catalyzes a reversible transfer of a two-carbon (C2 ) unit between phosphoketose donors and phosphoaldose acceptors, for which the group-transfer reaction that follows a one- or two-electron mechanism and the force that breaks the C2"-C3" bond of the ketose donors remain unresolved. Herein, we report ultrahigh-resolution crystal structures of a TK (TKps) from Pichia stipitis in previously undiscovered intermediate states and support a diradical mechanism for a reversible group-transfer reaction. In conjunction with MS, NMR spectroscopy, EPR and computational analyses, it is concluded that the enzyme-catalyzed non-Kekulé diradical cofactor brings about the C2"-C3" bond cleavage/formation for the C2 -unit transfer reaction, for which suppression of activation energy and activation and destabilization of enzymatic intermediates are facilitated.
Collapse
Affiliation(s)
- Ning‐Shian Hsu
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
- Institute of Biochemistry and Molecular BiologyNational Yang-Ming UniversityTaipei112Taiwan
| | - Yung‐Lin Wang
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | - Kuan‐Hung Lin
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
- Institute of Biochemistry and Molecular BiologyNational Yang-Ming UniversityTaipei112Taiwan
| | - Chi‐Fon Chang
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | - Shyue‐Chu Ke
- Department of PhysicsNational Dong Hwa UniversityHualien974Taiwan
| | - Syue‐Yi Lyu
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | - Li‐Jen Hsu
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | - Yi‐Shan Li
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | | | | | - Tsung‐Lin Li
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
- Biotechnology CenterNational Chung Hsing UniversityTaichung City402Taiwan
| |
Collapse
|