1
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
2
|
Warmerdam Z, Kamba BE, Le MH, Schrader T, Isaacs L, Bayer P, Hof F. Binding Methylarginines and Methyllysines as Free Amino Acids: A Comparative Study of Multiple Host Classes*. Chembiochem 2021; 23:e202100502. [PMID: 34758178 PMCID: PMC9299052 DOI: 10.1002/cbic.202100502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Indexed: 01/18/2023]
Abstract
Methylated free amino acids are an important class of targets for host‐guest chemistry that have recognition properties distinct from those of methylated peptides and proteins. We present comparative binding studies for three different host classes that are each studied with multiple methylated arginines and lysines to determine fundamental structure‐function relationships. The hosts studied are all anionic and include three calixarenes, two acyclic cucurbiturils, and two other cleft‐like hosts, a clip and a tweezer. We determined the binding association constants for a panel of methylated amino acids using indicator displacement assays. The acyclic cucurbiturils display stronger binding to the methylated amino acids, and some unique patterns of selectivity. The two other cleft‐like hosts follow two different trends, shallow host (clip) following similar trends to the calixarenes, and the other more closed host (tweezer) binding certain less‐methylated amino acids stronger than their methylated counterparts. Molecular modelling sheds some light on the different preferences of the various hosts. The results identify hosts with new selectivities and with affinities in a range that could be useful for biomedical applications. The overall selectivity patterns are explained by a common framework that considers the geometry, depth of binding pockets, and functional group participation across all host classes.
Collapse
Affiliation(s)
- Zoey Warmerdam
- Department of Chemistry and the Centre for, Advanced Materials and Related Technology, University of Victoria, 3800 Finnerty Rd, V8W 3V6, Victoria, BC, Canada
| | - Bianca E Kamba
- Department of Structural and Medicinal Biochemistry, Universität Duisburg Essen, Universitätstrasse 2, 45141, Essen, Germany
| | - My-Hue Le
- Department of Chemistry, Universität Duisburg Essen, Universitätstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Department of Chemistry, Universität Duisburg Essen, Universitätstrasse 7, 45117, Essen, Germany
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, College Park, USA
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Universität Duisburg Essen, Universitätstrasse 2, 45141, Essen, Germany
| | - Fraser Hof
- Department of Chemistry and the Centre for, Advanced Materials and Related Technology, University of Victoria, 3800 Finnerty Rd, V8W 3V6, Victoria, BC, Canada
| |
Collapse
|
3
|
Harrison EE, Carpenter BA, St Louis LE, Mullins AG, Waters ML. Development of "Imprint-and-Report" Dynamic Combinatorial Libraries for Differential Sensing Applications. J Am Chem Soc 2021; 143:14845-14854. [PMID: 34463091 DOI: 10.1021/jacs.1c07068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sensor arrays using synthetic receptors have found great utility in analyte detection, resulting from their ability to distinguish analytes based on differential signals via indicator displacement. However, synthesis and characterization of receptors for an array remain a bottleneck in the field. Receptor discovery has been streamlined using dynamic combinatorial libraries (DCLs), but the resulting receptors have primarily been utilized in isolation rather than as part of the entire library, with only a few examples that make use of the complexity of a library of receptors. Herein, we demonstrate a unique sensor array approach using "imprint-and-report" DCLs that obviates the need for receptor synthesis and isolation. This strategy leverages information stored in DCLs in the form of differential library speciation to provide a high-throughput method for both developing a sensor array and analyzing data for analyte differentiation. First, each DCL is templated with analyte to give an imprinted library, followed by in situ fluorescent indicator displacement analysis. We further demonstrate that the reverse strategy, imprinting with the fluorescent reporter followed by displacement with each analyte, provides a more sensitive method for differentiating analytes. We describe the development of this differential sensing system using the methylated Arg and Lys post-translational modifications (PTMs). Altogether, 19 combinations of 3-5 DCL data sets that discriminate all 7 PTMs were identified. Thus, a comparable sensor array workflow results in a larger payoff due to the immense information stored within multiple noncovalent networks.
Collapse
Affiliation(s)
- Emily E Harrison
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin A Carpenter
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E St Louis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexandria G Mullins
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Shaurya A, Garnett GAE, Starke MJ, Grasdal MC, Dewar CC, Kliuchynskyi AY, Hof F. An easily accessible, lower rim substituted calix[4]arene selectively binds N, N-dimethyllysine. Org Biomol Chem 2021; 19:4691-4696. [PMID: 33978657 DOI: 10.1039/d1ob00524c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Post-translational modifications (PTMs) are critical controllers of protein functions. One set of important PTMs are N-methylated side chains of lysine and arginine, which exist in several functionally distinct forms. Multiple groups have demonstrated the selective binding of the most hydrophobic family member, trimethyllysine (Kme3), using various macrocyclic hosts, but the selective binding of lower methylation states remains challenging. Herein we report that the installation of a sulfonate ester on the lower rim phenol of p-sulfonatocalix[4]arene efficiently generates a potent, N,N-dimethyllysine (Kme2)-selective host in one step from commercially available starting materials. We characterize its binding behaviors in solution, and examine the relationship between its unusual conformational dynamics and its guest-binding properties.
Collapse
Affiliation(s)
- Alok Shaurya
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Graham A E Garnett
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Melissa J Starke
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Mark C Grasdal
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Charlotte C Dewar
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Anton Y Kliuchynskyi
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Fraser Hof
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
5
|
Ishii M, Nakakido M, Caaveiro JMM, Kuroda D, Okumura CJ, Maruyama T, Entzminger K, Tsumoto K. Structural basis for antigen recognition by methylated lysine-specific antibodies. J Biol Chem 2020; 296:100176. [PMID: 33303630 PMCID: PMC7948472 DOI: 10.1074/jbc.ra120.015996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/05/2022] Open
Abstract
Proteins are modulated by a variety of posttranslational modifications including methylation. Despite its importance, the majority of protein methylation modifications discovered by mass spectrometric analyses are functionally uncharacterized, partly owing to the difficulty in obtaining reliable methylsite-specific antibodies. To elucidate how functional methylsite-specific antibodies recognize the antigens and lead to the development of a novel method to create such antibodies, we use an immunized library paired with phage display to create rabbit monoclonal antibodies recognizing trimethylated Lys260 of MAP3K2 as a representative substrate. We isolated several methylsite-specific antibodies that contained unique complementarity determining region sequence. We characterized the mode of antigen recognition by each of these antibodies using structural and biophysical analyses, revealing the molecular details, such as binding affinity toward methylated/nonmethylated antigens and structural motif that is responsible for recognition of the methylated lysine residue, by which each antibody recognized the target antigen. In addition, the comparison with the results of Western blotting analysis suggests a critical antigen recognition mode to generate cross-reactivity to protein and peptide antigen of the antibodies. Computational simulations effectively recapitulated our biophysical data, capturing the antibodies of differing affinity and specificity. Our exhaustive characterization provides molecular architectures of functional methylsite-specific antibodies and thus should contribute to the development of a general method to generate functional methylsite-specific antibodies by de novo design.
Collapse
Affiliation(s)
- Misaki Ishii
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | | | | | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Maas MN, Hintzen JCJ, Porzberg MRB, Mecinović J. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int J Mol Sci 2020; 21:E9451. [PMID: 33322546 PMCID: PMC7764450 DOI: 10.3390/ijms21249451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Trimethyllysine is an important post-translationally modified amino acid with functions in the carnitine biosynthesis and regulation of key epigenetic processes. Protein lysine methyltransferases and demethylases dynamically control protein lysine methylation, with each state of methylation changing the biophysical properties of lysine and the subsequent effect on protein function, in particular histone proteins and their central role in epigenetics. Epigenetic reader domain proteins can distinguish between different lysine methylation states and initiate downstream cellular processes upon recognition. Dysregulation of protein methylation is linked to various diseases, including cancer, inflammation, and genetic disorders. In this review, we cover biomolecular studies on the role of trimethyllysine in carnitine biosynthesis, different enzymatic reactions involved in the synthesis and removal of trimethyllysine, trimethyllysine recognition by reader proteins, and the role of trimethyllysine on the nucleosome assembly.
Collapse
Affiliation(s)
| | | | | | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.N.M.); (J.C.J.H.); (M.R.B.P.)
| |
Collapse
|
7
|
Pan Y, Barba‐Bon A, Tian H, Ding F, Hennig A, Nau WM, Guo D. An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysine‐rich Peptides and Proteins. Angew Chem Int Ed Engl 2020; 60:1875-1882. [DOI: 10.1002/anie.202011185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Andrea Barba‐Bon
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Han‐Wen Tian
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Fei Ding
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Andreas Hennig
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
- Institute of Chemistry of New Materials and School of Biology/Chemistry Universität Osnabrück Osnabrück Germany
- Center of Cellular Nanoanalytics (CellNanOs) Universität Osnabrück Osnabrück Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Dong‐Sheng Guo
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Pan Y, Barba‐Bon A, Tian H, Ding F, Hennig A, Nau WM, Guo D. An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysine‐rich Peptides and Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Andrea Barba‐Bon
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Han‐Wen Tian
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Fei Ding
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Andreas Hennig
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
- Institute of Chemistry of New Materials and School of Biology/Chemistry Universität Osnabrück Osnabrück Germany
- Center of Cellular Nanoanalytics (CellNanOs) Universität Osnabrück Osnabrück Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Dong‐Sheng Guo
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| |
Collapse
|
9
|
Paudics A, Hessz D, Bojtár M, Gyarmati B, Szilágyi A, Kállay M, Bitter I, Kubinyi M. Binding Modes of a Phenylpyridinium Styryl Fluorescent Dye with Cucurbiturils. Molecules 2020; 25:E5111. [PMID: 33153219 PMCID: PMC7663148 DOI: 10.3390/molecules25215111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
In order to explore how cucurbituril hosts accommodate an N-phenyl-pyridinium derivative guest, the complexation of the solvatochromic dye, 4-(4-(dimethylamino)styryl)-1-phenylpyridinium iodide (PhSt) with ,',δ,δ'-tetramethyl-cucurbit[6]uril (Me4CB6) and cucurbit[7]uril (CB7) was investigated by absorption spectroscopic, fluorescence and NMR experiments. In aqueous solutions, PhSt forms 1:1 complexes with both cucurbiturils, the complex with CB7 has a higher stability constant (Ka = 6.0 × 106 M-1) than the complex with Me4CB6 (Ka = 1.1 × 106 M-1). As revealed by NMR experiments and confirmed by theoretical calculations, CB7 encapsulates the whole phenylpyridinium entity of the PhSt cation guest, whereas the cavity of Me4CB6 includes only the phenyl ring, the pyridinium ring is bound to the carbonyl rim of the host. The binding of PhSt to cucurbiturils is accompanied by a strong enhancement of the fluorescence quantum yield due to the blocking of the deactivation through a twisted intramolecular charge transfer (TICT) state. The TICT mechanism in PhSt was characterized by fluorescence experiments in polyethylene glycol (PEG) solvents of different viscosities. The PhSt-CB7 system was tested as a fluorescence indicator displacement (FID) assay, and it recognized trimethyl-lysine selectively over other lysine derivatives.
Collapse
Affiliation(s)
- Adrien Paudics
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - Dóra Hessz
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - Márton Bojtár
- “Lendület” Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1519 Budapest, Hungary;
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| | - István Bitter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| | - Miklós Kubinyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (A.P.); (D.H.); (B.G.); (A.S.); (M.K.)
| |
Collapse
|
10
|
Pearce KG, Crossley IR. Diphosphametacyclophanes: Structural and Electronic Influences of Substituent Variation within a Family of Bis(diketophosphanyl) Macrocycles. J Org Chem 2020; 85:14697-14707. [DOI: 10.1021/acs.joc.0c01950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyle G. Pearce
- Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Ian R. Crossley
- Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
11
|
Pan Y, Hu X, Guo D. Biomedizinische Anwendungen von Calixarenen: Stand der Wissenschaft und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
12
|
Pan Y, Hu X, Guo D. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew Chem Int Ed Engl 2020; 60:2768-2794. [DOI: 10.1002/anie.201916380] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Lambert S, Bartik K, Jabin I. Specific Binding of Primary Ammonium Ions and Lysine-Containing Peptides in Protic Solvents by Hexahomotrioxacalix[3]arenes. J Org Chem 2020; 85:10062-10071. [PMID: 32657587 DOI: 10.1021/acs.joc.0c01294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The binding of ammonium ions by two homooxacalix[3]arene-based receptors was studied using NMR spectroscopy and in silico methods. Both receptors are shown to endocomplex, even in a protic environment, a large variety of primary ammonium ions, including biomolecules. The binding mode is similar for all guests with the ammonium ion deeply inserted into the polyaromatic cavity and its NH3+ head nearly in the plane defined by the three oxygen atoms of the 18-crown-3 moiety, thus enabling it to establish three H-bonds with the ethereal macrocycle. The remarkable electronic, size, and shape complementarity between primary ammonium ions and the two cavity-based receptors leads to an unprecedented specificity for primary ammonium ions over secondary, tertiary, and quaternary ones. These binding properties were exploited for the selective liquid-liquid extraction of primary ammonium salts from water and for the selective recognition of lysine-containing peptides, opening new perspectives in the field of peptide sensing.
Collapse
Affiliation(s)
- Simon Lambert
- Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.,Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Kristin Bartik
- Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| |
Collapse
|
14
|
Mullins AG, St. Louis LE, Waters ML. Using changes in speciation in a dynamic combinatorial library as a fingerprint to differentiate the methylation states of arginine. Chem Commun (Camb) 2020; 56:3947-3950. [DOI: 10.1039/d0cc00415d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A dynamic combinatorial library was shown to provide a direct method of sensing methylated arginine and lysine due to differences in speciation. This provides the first sensor array for all the methylation states of arginine.
Collapse
Affiliation(s)
- Alexandria G. Mullins
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Lauren E. St. Louis
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Marcey L. Waters
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|
15
|
Mullins AG, Pinkin NK, Hardin JA, Waters ML. Achieving High Affinity and Selectivity for Asymmetric Dimethylarginine by Putting a Lid on a Box. Angew Chem Int Ed Engl 2019; 58:5282-5285. [DOI: 10.1002/anie.201814645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Alexandria G. Mullins
- Department of Chemistry, CB 3290University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
| | - Nicholas K. Pinkin
- Department of Chemistry, CB 3290University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
| | - Joshua A. Hardin
- Department of Chemistry, CB 3290University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
| |
Collapse
|
16
|
Mullins AG, Pinkin NK, Hardin JA, Waters ML. Achieving High Affinity and Selectivity for Asymmetric Dimethylarginine by Putting a Lid on a Box. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandria G. Mullins
- Department of Chemistry, CB 3290University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
| | - Nicholas K. Pinkin
- Department of Chemistry, CB 3290University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
| | - Joshua A. Hardin
- Department of Chemistry, CB 3290University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA
| |
Collapse
|