1
|
Min S, Jang B, Yun JH, Yang H, Sung JY, Lim GE, Kim YN, Lee W, Oh ES. Anticancer effect of a single-chain variable fragment against pro-matrix metalloproteinase-7 in colon cancer. Matrix Biol 2025; 135:125-134. [PMID: 39805673 DOI: 10.1016/j.matbio.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025]
Abstract
Disrupting the interaction between matrix metalloproteinase-7 (MMP-7) and syndecan-2 (SDC-2) can yield anticancer effects in colon cancer cells. Here, a single-chain variable fragment (scFv) targeting the pro-domain of MMP-7 was generated as a potential candidate anticancer agent. Among the generated scFvs, those designated 1B7 and 1C3 showed the strongest abilities to inhibit the ability of MMP-7 pro-domain to directly interact with SDC-2 in vitro and decrease the cancer activities of human HT29 colon adenocarcinoma cells. Consistently, 1B7 and 1C3 inhibited the cell-surface localization of pro-MMP-7, reduced the gelatinolytic activity of MMP-7, and suppressed the cancer activities of metastatic HCT116 human colon carcinoma cells. Notably, 1B7 inhibited the primary tumor growth and lung metastasis of CT26 mouse colon cancer cells in a mouse model. Compared to 1B7, the 1B7-Fc fusion antibody showed better anti-tumorigenic activity against HCT116 cells in culture and a syngeneic mouse model. Together, these data suggest that 1B7-Fc exerts anticancer effects by interfering with the interaction of MMP-7 and SDC-2 and could be a promising therapeutic antibody for colon cancer.
Collapse
Affiliation(s)
- Shinhye Min
- Department of Life Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Ji-Hye Yun
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, South Korea; Epinogen, Ltd., 604 KBIZ DMC Tower, Seoul 03929, South Korea
| | - Hyeonju Yang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jee Young Sung
- Cancer Metastasis Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Gyeonggi-do, Goyang-si 10408, South Korea
| | - Ga-Eun Lim
- Cancer Metastasis Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Gyeonggi-do, Goyang-si 10408, South Korea
| | - Yong-Nyun Kim
- Cancer Metastasis Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Gyeonggi-do, Goyang-si 10408, South Korea
| | - Weontae Lee
- Epinogen, Ltd., 604 KBIZ DMC Tower, Seoul 03929, South Korea; Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
2
|
Kalantar M, Kalanther I, Kumar S, Buxton EK, Raeeszadeh-Sarmazdeh M. Determining key residues of engineered scFv antibody variants with improved MMP-9 binding using deep sequencing and machine learning. Comput Struct Biotechnol J 2024; 23:3759-3770. [PMID: 39525083 PMCID: PMC11550764 DOI: 10.1016/j.csbj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Given the crucial role of specific matrix metalloproteinases (MMPs) in the extracellular matrix, an imbalance in the regulation of activation of matrix metalloproteinase-9 (MMP-9) zymogen and inhibition of the enzyme can result in various diseases, such as cancer, neurodegenerative, and gynecological diseases. Thus, developing novel therapeutics that target MMP-9 with single-chain antibody fragments (scFvs) is a promising approach. We used fluorescent-activated cell sorting (FACS) to screen a synthetic scFv antibody library displayed on yeast for enhanced binding to MMP-9. The screened scFv mutants demonstrated improved binding to MMP-9 compared to the natural inhibitor of MMPs, tissue inhibitor of metalloproteinases (TIMPs). To identify the molecular determinants of these engineered scFv variants that affect binding to MMP-9, we used next-generation DNA sequencing and computational protein structure analysis. Additionally, a deep-learning language model was trained on the screened scFv library of variants to predict the binding affinities of scFv variants based on their CDR-H3 sequences.
Collapse
Affiliation(s)
- Masoud Kalantar
- Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | | | - Sachin Kumar
- Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | | | | |
Collapse
|
3
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
4
|
Kalantar M, Kalanther I, Kumar S, Buxton EK, Raeeszadeh-Sarmazdeh M. Elucidating key determinants of engineered scFv antibody in MMP-9 binding using high throughput screening and machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597476. [PMID: 38895413 PMCID: PMC11185642 DOI: 10.1101/2024.06.04.597476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
An imbalance in matrix metalloproteinase-9 (MMP-9) regulation can lead to numerous diseases, including neurological disorders, cancer, and pre-term labor. Engineering single-chain antibody fragments (scFvs) Targeting MMP-9 to develop novel therapeutics for such diseases is desirable. We screened a synthetic scFv antibody library displayed on the yeast surface for binding improvement to MMP-9 using FACS (fluorescent-activated cell sorting). The scFv antibody clones isolated after FACS showed improvement in binding to MMP-9 compared to the endogenous inhibitor. To understand molecular determinants of binding between engineered scFv antibody variants and MMP-9, next-generation DNA sequencing, and computational protein structure analysis were used. Additionally, a deep-learning language model was trained on the synthetic library to predict the binding of scFv variants using their CDR-H3 sequences.
Collapse
|
5
|
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, Hu X, Wen T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol 2024; 15:1328145. [PMID: 38298192 PMCID: PMC10828056 DOI: 10.3389/fimmu.2024.1328145] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Mu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Abstract
For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.
Collapse
Affiliation(s)
- Adrian D Hobson
- Small Molecule Therapeutics & Platform Technologies, AbbVie Bioresearch Center, Worcester, MA, United States.
| |
Collapse
|
7
|
Fujii T, Matsuda Y. Novel formats of antibody conjugates: recent advances in payload diversity, conjugation, and linker chemistry. Expert Opin Biol Ther 2023; 23:1053-1065. [PMID: 37953519 DOI: 10.1080/14712598.2023.2276873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the field of bioconjugates, the focus on antibody - drug conjugates (ADCs) with novel payloads beyond the traditional categories of potent cytotoxic agents is increasing. These innovative ADCs exhibit various molecular formats, ranging from small-molecule payloads, such as immune agonists and proteolytic agents, to macromolecular payloads, such as oligonucleotides and proteins. AREAS COVERED This review offers an in-depth exploration of unconventional strategies for designing conjugates with novel mechanisms of action and notable examples of approaches that show promising prospects. Representative examples of novel format payloads and their classification, attributes, and appropriate conjugation techniques are discussed in detail. EXPERT OPINION The existing basic technologies used to manufacture ADCs can be directly applied to synthesize novel formatted conjugates. However, a wide variety of new payloads require the creation of customized technologies adapted to the unique characteristics of these payloads. Consequently, fundamental technologies, such as conjugation methods aimed at achieving high drug - antibody ratios and developing stable crosslinkers, are likely to become increasingly important research areas in the future.
Collapse
|
8
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
9
|
Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol 2023; 16:3. [PMID: 36650546 PMCID: PMC9847035 DOI: 10.1186/s13045-022-01397-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Collapse
|
10
|
Sokolova O, Naumann M. Matrix Metalloproteinases in Helicobacter pylori-Associated Gastritis and Gastric Cancer. Int J Mol Sci 2022; 23:1883. [PMID: 35163805 PMCID: PMC8836485 DOI: 10.3390/ijms23031883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is one of the leading causes of the cancer-related mortality worldwide. The etiology of this disease is complex and involves genetic predisposition and environmental factors, including Helicobacter pylori. Infection of the stomach with H. pylori leads to gastritis and gastric atrophy, which can progress stepwise to gastric cancer. Matrix metalloproteinases (MMPs) actively participate in the pathology development. The further progression of gastric cancer seems to be less dependent on bacteria but of intra-tumor cell dynamics. Bioinformatics data confirmed an important role of the extracellular matrix constituents and specific MMPs in stomach carcinoma invasion and metastasis, and revised their potential as predictors of the disease outcome. In this review, we describe, in detail, the impact of MMPs in H. pylori-associated gastritis and gastric cancer.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
11
|
Ashman N, Bargh JD, Spring DR. Non-internalising antibody–drug conjugates. Chem Soc Rev 2022; 51:9182-9202. [DOI: 10.1039/d2cs00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review introduces non-internalising Antibody–Drug Conjugates (ADCs), highlighting the linker chemistry that enables extracellular payload release.
Collapse
Affiliation(s)
- Nicola Ashman
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jonathan D. Bargh
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David R. Spring
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
12
|
Waller V, Pruschy M. Combined Radiochemotherapy: Metalloproteinases Revisited. Front Oncol 2021; 11:676583. [PMID: 34055644 PMCID: PMC8155607 DOI: 10.3389/fonc.2021.676583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022] Open
Abstract
Besides cytotoxic DNA damage irradiation of tumor cells triggers multiple intra- and intercellular signaling processes, that are part of a multilayered, treatment-induced stress response at the unicellular and tumor pathophysiological level. These processes are intertwined with intrinsic and acquired resistance mechanisms to the toxic effects of ionizing radiation and thereby co-determine the tumor response to radiotherapy. Proteolysis of structural elements and bioactive signaling moieties represents a major class of posttranslational modifications regulating intra- and intercellular communication. Plasma membrane-located and secreted metalloproteinases comprise a family of metal-, usually zinc-, dependent endopeptidases and sheddases with a broad variety of substrates including components of the extracellular matrix, cyto- and chemokines, growth and pro-angiogenic factors. Thereby, metalloproteinases play an important role in matrix remodeling and auto- and paracrine intercellular communication regulating tumor growth, angiogenesis, immune cell infiltration, tumor cell dissemination, and subsequently the response to cancer treatment. While metalloproteinases have long been identified as promising target structures for anti-cancer agents, previous pharmaceutical approaches mostly failed due to unwanted side effects related to the structural similarities among the multiple family members. Nevertheless, targeting of metalloproteinases still represents an interesting rationale alone and in combination with other treatment modalities. Here, we will give an overview on the role of metalloproteinases in the irradiated tumor microenvironment and discuss the therapeutic potential of using more specific metalloproteinase inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
- Verena Waller
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020; 9:antib9010002. [PMID: 31936270 PMCID: PMC7148502 DOI: 10.3390/antib9010002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.
Collapse
|
14
|
Love EA, Sattikar A, Cook H, Gillen K, Large JM, Patel S, Matthews D, Merritt A. Developing an Antibody-Drug Conjugate Approach to Selective Inhibition of an Extracellular Protein. Chembiochem 2019; 20:754-758. [PMID: 30507063 PMCID: PMC6582441 DOI: 10.1002/cbic.201800623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 01/20/2023]
Abstract
Antibody-drug conjugates (ADCs) are a growing class of therapeutics that harness the specificity of antibodies and the cell-killing potency of small-molecule drugs. Beyond cytotoxics, there are few examples of the application of an ADC approach to difficult drug discovery targets. Here, we present the initial development of a non-internalising ADC, with a view to selectively inhibiting an extracellular protein. Employing the wellinvestigated matrix metalloproteinase-9 (MMP-9) as our model, we adapted a broad-spectrum, nonselective MMP inhibitor for conjugation and linked this to a MMP-9-targeting antibody. The resulting ADC fully inhibits MMP-9, and ELISA results suggest antibody targeting can direct a nonselective inhibitor.
Collapse
Affiliation(s)
| | - Afrah Sattikar
- LifeArcAccelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - Hannah Cook
- LifeArcAccelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - Kevin Gillen
- LifeArcAccelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | | | - Seema Patel
- LifeArcAccelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - David Matthews
- LifeArcAccelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - Andy Merritt
- LifeArcAccelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| |
Collapse
|