1
|
Roscales S, Csáky AG. Metal-Free Aminophosphonation: Eco-Friendly Synthesis and Photophysical Properties of Fluorescent 3-(Aminoimidazo[1,2-a]Pyridin-2-yl)Phosphonates. Angew Chem Int Ed Engl 2024:e202412300. [PMID: 39218782 DOI: 10.1002/anie.202412300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
We report a novel, metal-free procedure for the direct aminophosphonation of imidazo[1,2-a]pyridines in green solvents under open air conditions. This method is characterized by its mild and sustainable conditions, ease of operation, scalability, and excellent functional group compatibility. The synthesized compounds exhibit promising photophysical properties, including significant Stokes shifts and quantum yields, making them potential candidates for innovative fluorescent probes.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Paseo de Juan XXIII, 1, 28040-, Madrid, Spain
| | - Aurelio G Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Paseo de Juan XXIII, 1, 28040-, Madrid, Spain
| |
Collapse
|
2
|
Tholen P, Brown CN, Keil C, Bayir A, Zeng HH, Haase H, Thompson RB, Lengyel I, Yücesan G. A 2,7-dichlorofluorescein derivative to monitor microcalcifications. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2022; 7:1415-1421. [PMID: 37927331 PMCID: PMC10624163 DOI: 10.1039/d2me00185c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Herein, we report the crystal structure of 2,7-dichlorofluorescein methyl ester (DCF-ME) and its fluorescence response to hydroxyapatite binding. The reported fluorophore is very selective for staining the bone matrix and provides turn-on fluorescence upon hydroxyapatite binding. The reported fluorophore can readily pass the cell membrane of the C2C12 cell line, and it is non-toxic for the cell line. The reported fluorophore DCF-ME may find applications in monitoring bone remodeling and microcalcification as an early diagnosis tool for breast cancer and age-related macular degeneration.
Collapse
Affiliation(s)
- Patrik Tholen
- Institute for Food Chemistry and Toxicology, Germany, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Connor N Brown
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Claudia Keil
- Institute for Food Chemistry and Toxicology, Germany, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Ali Bayir
- The Department of Chemistry, Yıldız Technical University, 34220, Esenler, Istanbul, Turkey
| | - Hui-Hui Zeng
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Hajo Haase
- Institute for Food Chemistry and Toxicology, Germany, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Gündoğ Yücesan
- Institute for Food Chemistry and Toxicology, Germany, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
3
|
Keil C, Klein J, Schmitt F, Zorlu Y, Haase H, Yücesan G. Arylphosphonate-Tethered Porphyrins: Fluorescence Silencing Speaks a Metal Language in Living Enterocytes*. Chembiochem 2021; 22:1925-1931. [PMID: 33554446 PMCID: PMC8252553 DOI: 10.1002/cbic.202100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Indexed: 12/22/2022]
Abstract
We report the application of a highly versatile and engineerable novel sensor platform to monitor biologically significant and toxic metal ions in live human Caco-2 enterocytes. The extended conjugation between the fluorescent porphyrin core and metal ions through aromatic phenylphosphonic acid tethers generates a unique turn off and turn on fluorescence and, in addition, shifts in absorption and emission spectra for zinc, cobalt, cadmium and mercury. The reported fluorescent probes p-H8 TPPA and m-H8 TPPA can monitor a wide range of metal ion concentrations via fluorescence titration and also via fluorescence decay curves. Cu- and Zn-induced turn off fluorescence can be differentially reversed by the addition of common chelators. Both p-H8 TPPA and m-H8 TPPA readily pass the mammalian cellular membrane due to their amphipathic character as confirmed by confocal microscopic imaging of living enterocytes.
Collapse
Affiliation(s)
- Claudia Keil
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Julia Klein
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Franz‐Josef Schmitt
- Martin-Luther-Universität Halle-WittenbergDepartment of Physicsvon-Danckelmann-Platz 306120Halle/SaaleGermany
| | - Yunus Zorlu
- Department of ChemistryFaculty of ScienceGebze Technical University41400Gebze-KocaeliTurkey
| | - Hajo Haase
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Gündoğ Yücesan
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|