1
|
Allgayer R, Kabir RF, Bergeron A, Demers P, Mantovani D, Cerruti M. A collagen-based laboratory model to mimic sex-specific features of calcific aortic valve disease. Acta Biomater 2025; 194:204-218. [PMID: 39864641 DOI: 10.1016/j.actbio.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Calcific aortic valve disease (CAVD) shows in the deposition of calcium phosphates in the collagen-rich layer of the valve leaflets. This stiffens the leaflets and eventually leads to heart failure. Recent research suggests that CAVD follows sex-specific pathways: at the same severity of the disease, women tend to have fewer and less crystalline calcifications, and the phases of their calcifications are decidedly different than those of men; namely, dicalcium phosphate dihydrate (DCPD) - one of the mineral phases in CAVD - occurs almost exclusively in females. Furthermore, the morphologies of heart valve calcifications might be sex-specific, but the sex dependence of the morphologies has not been systematically investigated. Herein, we first show that male CAVD patients have more compact and less fibrous calcifications than females, establishing sex-dependent morphological features of heart valve calcification. We then build a model that recapitulates the sex differences of the calcifications in CAVD, which is based on a collagen gel that we calcify in simulated body fluid with varying fetuin A concentrations. With increasing fetuin A concentration, the calcifications become less crystalline and more fibrous, and more DCPD deposits in the collagen matrix, resembling the physicochemical characteristics of the calcifications in female valves. Lower fetuin A concentrations give rise to a model that replicates male-specific mineral characteristics. The models could be used to develop sex-specific detection and treatment methods for CAVD. STATEMENT OF SIGNIFICANCE: Although calcific aortic valve disease (CAVD) affects ∼10 million people globally, researchers have only discovered recently that the disease follows sex-specific pathways, and many of its sex-specific features remain unknown. To further our understanding of sex differences in CAVD and to develop better detection and treatment methods, there is an urgent need to establish models for CAVD that account for its sex-specific manifestations. In this study, we first show that CAVD calcifications in men and women take on different morphologies. Second, we present a model that can replicate physicochemical calcification characteristics of male or female valves, including morphology, and that can help to develop sex-specific detection and treatment methods for CAVD.
Collapse
Affiliation(s)
- Raphaela Allgayer
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, QC H3A 0C5, Canada
| | - Reefah Fahmida Kabir
- Department of Bioengineering, McGill University, 3480 Rue University, Montreal, QC H2A 0E9, Canada
| | - Alexandre Bergeron
- Department of Surgery, Montreal Heart Institute, 5000 Rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Philippe Demers
- Department of Surgery, Montreal Heart Institute, 5000 Rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, QC H3A 0C5, Canada.
| |
Collapse
|
2
|
Sun Y, Wang Y, Ji C, Ma J, He B. The impact of hydroxyapatite crystal structures and protein interactions on bone's mechanical properties. Sci Rep 2024; 14:9786. [PMID: 38684921 PMCID: PMC11059379 DOI: 10.1038/s41598-024-60701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
Hydroxyapatite (HAP) constitutes the primary mineral component of bones, and its crystal structure, along with the surface interaction with proteins, significantly influences the outstanding mechanical properties of bone. This study focuses on natural hydroxyapatite, constructing a surface model with calcium vacancy defects. Employing a representative model of aspartic acid residues, we delve into the adsorption mechanism on the crystal surface and scrutinize the adsorption forms of amino acid residues on HAP and calcium-deficient hydroxyapatite (CDHA) surfaces. The research also explores the impact of different environments on adsorption energy. Furthermore, a simplified sandwich structure of crystal-polypeptide-crystal is presented, analyzing the distribution of amino acid residue adsorption sites on the crystal surface of the polypeptide fragment. This investigation aims to elucidate how the stick-slip mechanism of polypeptide molecules on the crystal surface influences the mechanical properties of the system. By uncovering the interface mechanical behavior between HAP and osteopontin peptides, this article offers valuable theoretical insights for the construction and biomimetic design of biocomposites.
Collapse
Affiliation(s)
- Yadi Sun
- Tianjin Hospital, Tianjin University, Tianjin, 300211, People's Republic of China
- Tianjin Orthopedic Institute, Tianjin, 300050, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, People's Republic of China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin, 300211, People's Republic of China
- Tianjin Orthopedic Institute, Tianjin, 300050, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, People's Republic of China
| | - Chunhui Ji
- School of Mechanical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin, 300211, People's Republic of China.
- Tianjin Orthopedic Institute, Tianjin, 300050, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, People's Republic of China.
| | - Bingnan He
- School of Mechanical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
3
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
4
|
Newcombe EA, Delaforge E, Hartmann-Petersen R, Skriver K, Kragelund BB. How phosphorylation impacts intrinsically disordered proteins and their function. Essays Biochem 2022; 66:901-913. [PMID: 36350035 PMCID: PMC9760426 DOI: 10.1042/ebc20220060] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
Abstract
Phosphorylation is the most common post-translational modification (PTM) in eukaryotes, occurring particularly frequently in intrinsically disordered proteins (IDPs). These proteins are highly flexible and dynamic by nature. Thus, it is intriguing that the addition of a single phosphoryl group to a disordered chain can impact its function so dramatically. Furthermore, as many IDPs carry multiple phosphorylation sites, the number of possible states increases, enabling larger complexities and novel mechanisms. Although a chemically simple and well-understood process, the impact of phosphorylation on the conformational ensemble and molecular function of IDPs, not to mention biological output, is highly complex and diverse. Since the discovery of the first phosphorylation site in proteins 75 years ago, we have come to a much better understanding of how this PTM works, but with the diversity of IDPs and their capacity for carrying multiple phosphoryl groups, the complexity grows. In this Essay, we highlight some of the basic effects of IDP phosphorylation, allowing it to serve as starting point when embarking on studies into this topic. We further describe how recent complex cases of multisite phosphorylation of IDPs have been instrumental in widening our view on the effect of protein phosphorylation. Finally, we put forward perspectives on the phosphorylation of IDPs, both in relation to disease and in context of other PTMs; areas where deep insight remains to be uncovered.
Collapse
Affiliation(s)
- Estella A Newcombe
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Elise Delaforge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Holzinger J, Kotisch H, Richter KW, Konrat R. Binding Mode Characterization of Osteopontin on Hydroxyapatite by Solution NMR Spectroscopy. Chembiochem 2021; 22:2300-2305. [PMID: 33914399 PMCID: PMC8359842 DOI: 10.1002/cbic.202100139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Indexed: 01/13/2023]
Abstract
Extracellular matrix glycoproteins play a major role in bone mineralization and modulation of osteogenesis. Among these, the intrinsically disordered protein osteopontin (OPN) is associated with the inhibition of formation, growth and proliferation of the bone mineral hydroxyapatite (HAP). Furthermore, post-translational modifications like phosphorylation can alter conformations and interaction properties of intrinsically disordered proteins (IDPs). Therefore, the actual interaction of OPN with a HAP surface on an atomic level and how this interaction is affected by phosphorylation is of great interest. Here, we study the interaction of full-length OPN on the surface of suspended HAP nanoparticles by solution NMR spectroscopy. We report the binding modes of this IDP and provide evidence for the influence of hyperphosphorylation on the binding character and an explanation for the differing roles in biomineralization. Our study moreover presents an easy and suitable option to measure interaction of nanoparticles in a stable suspension with full-length proteins.
Collapse
Affiliation(s)
- Julian Holzinger
- Department of Structural and Computational BiologyUniversity of Vienna, Max Perutz LabsVienna BioCenter Campus 51030ViennaAustria
| | - Harald Kotisch
- Vienna Biocenter Core Facilities GmbHDr. Bohr Gasse 31030ViennaAustria
| | - Klaus W. Richter
- Department of Inorganic Chemistry, Functional MaterialsUniversity of ViennaWähringer Str. 421090ViennaAustria
| | - Robert Konrat
- Department of Structural and Computational BiologyUniversity of Vienna, Max Perutz LabsVienna BioCenter Campus 51030ViennaAustria
| |
Collapse
|