1
|
Zeng Z, Cai W, Liu Y, Su Y, Sun Y, Tan L, Chang L, Liu Y, Wang Y, Liu T. Small Molecule Drugs Triggered the Activation of Macrocycle Masked Proteins. NANO LETTERS 2025; 25:3291-3299. [PMID: 39943878 DOI: 10.1021/acs.nanolett.4c06362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
On-demand activation of prodrugs represents an emerging and fast developing strategy to improve the therapeutic index of certain drugs. However, strategies to generate protein-based prodrugs with controllable activation are still limited. Here, we present a supramolecular masking strategy that enables on-demand activation of macrocycle-masked proteins with Food and Drug Administration (FDA)-approved oral drugs. Proteins of interest were engineered to incorporate two N-terminal peptide motifs, which were dimerized by cucurbit[8]uril (CB[8]) to form a supramolecular mask that sterically blocks functional protein interfaces, inhibiting interactions with targets or substrates. The inhibitory effect was selectively reversed by amantadine or memantine to restore the protein activity. This masking strategy was validated across various protein classes, including antibodies, cytokines, and enzymes. Activation of CB[8]-masked proteins was further demonstrated in living mice via FDA-approved small molecule treatments. Our method provided a supramolecular strategy for the selective activation of protein-based prodrugs and the development of next-generation protein therapeutics.
Collapse
Affiliation(s)
- Zhiying Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Wenkang Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Yingze Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Yeyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Linzhi Tan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Liying Chang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| |
Collapse
|
2
|
Rezaie F, Noorizadeh S. Theoretical investigation of tube-like supramolecular structures formed through bifurcated lithium bonds. Sci Rep 2023; 13:15260. [PMID: 37709798 PMCID: PMC10502010 DOI: 10.1038/s41598-023-41979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
The stability of three supramolecular naostructures, which are formed through the aggregation of identical belts of [12] arene containing p-nitrophenyllithium, 1,4-dilithiatedbenzene and 1,4-dinitrobenzene units, is investigated by density functional theory. The electrostatic potential calculations indicate the ability of these belts in forming bifurcated lithium bonds (BLBs) between the Li atoms of one belt and the oxygen atoms of the NO2 groups in the other belt, which is also confirmed by deformation density maps and quantum theory of atoms in molecules (QTAIM) analysis. Topological analysis and natural bond analysis (NBO) imply to ionic character for these BLBs with binding energies up to approximately - 60 kcal mol-1. The many-body interaction energy analysis shows the strong cooperativity belongs to the configuration with the highest symmetry (C4v) containing p-nitrophenyllithium fragments as the building unit. Therefore, it seems that this configuration could be a good candidate for designing a BLB-based supramolecular nanotube with infinite size in this study.
Collapse
Affiliation(s)
- Forough Rezaie
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Siamak Noorizadeh
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
4
|
Dang DT. Molecular Approaches to Protein Dimerization: Opportunities for Supramolecular Chemistry. Front Chem 2022; 10:829312. [PMID: 35211456 PMCID: PMC8861298 DOI: 10.3389/fchem.2022.829312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Protein dimerization plays a key role in many biological processes. Most cellular events such as enzyme activation, transcriptional cofactor recruitment, signal transduction, and even pathogenic pathways are significantly regulated via protein-protein interactions. Understanding and controlling the molecular mechanisms that regulate protein dimerization is crucial for biomedical applications. The limitations of engineered protein dimerization provide an opportunity for molecular chemistry to induce dimerization of protein in biological events. In this review, molecular control over dimerization of protein and activation in this respect are discussed. The well known molecule glue-based approaches to induced protein dimerization provide powerful tools to modulate the functionality of dimerized proteins and are shortly highlighted. Subsequently metal ion, nucleic acid and host-guest chemistry are brought forward as novel approaches for orthogonal control over dimerization of protein. The specific focus of the review will be on host-guest systems as novel, robust and versatile supramolecular approaches to modulate the dimerization of proteins, using functional proteins as model systems.
Collapse
Affiliation(s)
- Dung Thanh Dang
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| |
Collapse
|