1
|
Munsayac A, Leite WC, Hopkins JB, Hall I, O'Neill HM, Keane SC. Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. Structure 2025; 33:728-739.e4. [PMID: 39933513 DOI: 10.1016/j.str.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof of principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.
Collapse
Affiliation(s)
- Aldrex Munsayac
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Hennig J. Structural Biology of RNA and Protein-RNA Complexes after AlphaFold3. Chembiochem 2025; 26:e202401047. [PMID: 39936575 DOI: 10.1002/cbic.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/13/2025]
Abstract
Recent breakthroughs in AI-mediated protein structure prediction have significantly accelerated research and generated valuable hypotheses within the field of structural biology and beyond. Notably, AlphaFold2 has facilitated the determination of larger protein complexes for which only limited experimental data are available. De novo predictions can now be experimentally validated with relative ease compared to the pre-AlphaFold2 era. In May 2024, AlphaFold3 was launched with high expectations, promising the capability to accurately predict RNA structures and protein-RNA complexes - features that were absent in AlphaFold2. This review evaluates the extent to which AlphaFold3 fulfills this promise through specific examples. At present, AlphaFold3 falls short in reliably predicting RNA and protein-RNA complex structures, particularly for non-canonical interactions where training data remain scarce. As a result, users should exercise caution when using AlphaFold3 predictions as hypotheses generators for RNA and protein-RNA complex structures. In the interim, integrating AI-based predictors with data-driven docking tools is recommended to address these limitations. This approach can help bridge the gap until sufficient training data are available to enable the development of more reliable predictive algorithms.
Collapse
Affiliation(s)
- Janosch Hennig
- Chair Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 31, 95447, Bayreuth, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| |
Collapse
|
3
|
Ceylan B, Adam J, Toews S, Kaiser F, Dörr J, Scheppa D, Tants JN, Smart A, Schoth J, Philipp S, Stirnal E, Ferner J, Richter C, Sreeramulu S, Caliskan N, Schlundt A, Weigand JE, Göbel M, Wacker A, Schwalbe H. Optimization of Structure-Guided Development of Chemical Probes for the Pseudoknot RNA of the Frameshift Element in SARS-CoV-2. Angew Chem Int Ed Engl 2025; 64:e202417961. [PMID: 39887818 DOI: 10.1002/anie.202417961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Targeting the RNA genome of SARS-CoV-2 is a viable option for antiviral drug development. We explored three ligand binding sites of the core pseudoknot RNA of the SARS-CoV-2 frameshift element. We iteratively optimized ligands, based on improved affinities, targeting these binding sites and report on structural and dynamic properties of the three identified binding sites. Available experimental 3D structures of the pseudoknot element were compared to SAXS and NMR data to validate its dominant folding state in solution. In order to experimentally map in silico predicted binding sites, NMR assignments of the majority of nucleobases were achieved by segmental labeling of the pseudoknot RNA and isotope-filtered NMR experiments at 1.2 GHz, demonstrating the value of NMR spectroscopy to supplement modelling and docking data. Optimized ligands with enhanced affinity were shown to specifically inhibit frameshifting without affecting 0-frame translation in cell-free translation assays, establishing the frameshift element as target for drug-like ligands of low molecular weight.
Collapse
Affiliation(s)
- Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jennifer Adam
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Sabrina Toews
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Frank Kaiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jonas Dörr
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Daniel Scheppa
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Jan-Niklas Tants
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Alexandria Smart
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Straße 2/D15, 97080, Würzburg, Germany
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Universitätsstraße 31, 93053, Regensburg
| | - Julian Schoth
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Susanne Philipp
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Straße 2/D15, 97080, Würzburg, Germany
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Universitätsstraße 31, 93053, Regensburg
| | - Andreas Schlundt
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Julia E Weigand
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Michael Göbel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Koob T, Döpp S, Schwalbe H. 1H, 13C, 15N and 31P chemical shift assignment of the first stem-loop Guanidine-II riboswitch from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2025:10.1007/s12104-025-10217-6. [PMID: 39890743 DOI: 10.1007/s12104-025-10217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
A comprehensive understanding of RNA-based gene regulation is a fundamental aspect for the development of innovative therapeutic options in medicine and for a more targeted response to environmental problems. Within the different mechanisms of RNA-based gene regulation, riboswitches are particularly interesting as they change their structure in response to the interaction with a low molecular weight ligand, often a well-known metabolite. Four distinct classes of riboswitches recognize the very small guanidinium cation. We are focused on the Guanidine-II riboswitch with the mini-ykkC motif. We report here the assignment of the 1H, 13C, 15N and 31P chemical shifts of the 23 nucleotide-long sequence of the first stem-loop of the Guanidine-II riboswitch aptamer from Escherichia coli. Despite its small size, the assignment of the NMR signals of this RNA proved to be challenging as it has symmetrical base pairs and palindromic character.
Collapse
Affiliation(s)
- Tatjana Koob
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany
| | - Silas Döpp
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany.
| |
Collapse
|
5
|
Aguilar R, Mardones C, Moreno AA, Cepeda-Plaza M. A guide to RNA structure analysis and RNA-targeting methods. FEBS J 2024. [PMID: 39718192 DOI: 10.1111/febs.17368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
RNAs are increasingly recognized as promising therapeutic targets, susceptible to modulation by strategies that include targeting with small molecules, antisense oligonucleotides, deoxyribozymes (DNAzymes), or CRISPR/Cas13. However, while drug development for proteins follows well-established paths for rational design based on the accurate knowledge of their three-dimensional structure, RNA-targeting strategies are challenging since comprehensive RNA structures are yet scarce and challenging to acquire. Numerous methods have been developed to elucidate the secondary and three-dimensional structure of RNAs, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, SHAPE, DMS, and bioinformatic methods, yet they have often revealed flexible transcripts and co-existing populations rather than single-defined structures. Thus, researchers aiming to target RNAs face a critical decision: whether to acquire the detailed structure of transcripts in advance or to adopt phenotypic screens or sequence-based approaches that are independent of the structure. Still, even in strategies that seem to rely only on the nucleotide sequence (like the design of antisense oligonucleotides), researchers may need information about the accessibility of the compounds to the folded RNA molecule. In this concise guide, we provide an overview for researchers interested in targeting RNAs: We start by revisiting current methodologies for defining secondary or three-dimensional RNA structure and then we explore RNA-targeting strategies that may or may not require an in-depth knowledge of RNA structure. We envision that complementary approaches may expedite the development of RNA-targeting molecules to combat disease.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Constanza Mardones
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | |
Collapse
|
6
|
Feng S, Xiao W, Yu Y, Liu G, Zhang Y, Chen T, Lu C. Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch. Int J Mol Sci 2024; 25:11288. [PMID: 39457069 PMCID: PMC11508383 DOI: 10.3390/ijms252011288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tandem SAM-II/SAM-V riboswitch belongs to a class of riboswitches found in the marine bacterium 'Candidatus Pelagibacter ubique'. Previous studies have demonstrated that these riboswitches have the potential for digital modulation of gene expression at both the transcriptional and translational levels. In this study, we investigate the conformational changes in the tandem SAM-II/SAM-V riboswitch binding to S-adenosylmethionine (SAM) using selective 2'-hydroxyl acylation analyzed by the primer extension (SHAPE) assay, small-angle X-ray scattering (SAXS), and oligos depressing probing. Our findings reveal that the linker between SAM-II/SAM-V aptamers blocks the SAM response of the SAM-II domain. This result proposes a new mechanism for gene expression regulation, where the ligand-binding functions of tandem riboswitches can be selectively masked or released through a linker.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Wenwen Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Yingying Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| |
Collapse
|
7
|
Munsayac A, Leite WC, Hopkins JB, Hall I, O’Neill HM, Keane SC. Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612093. [PMID: 39314299 PMCID: PMC11419110 DOI: 10.1101/2024.09.09.612093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally-determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs in their free state and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof-of-principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.
Collapse
Affiliation(s)
- Aldrex Munsayac
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Sarah C. Keane
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Steuer J, Sinn M, Eble F, Rütschlin S, Böttcher T, Hartig JS, Peter C. Cooperative binding of bivalent ligands yields new insights into the guanidine-II riboswitch. NAR Genom Bioinform 2024; 6:lqae132. [PMID: 39323654 PMCID: PMC11423145 DOI: 10.1093/nargab/lqae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Riboswitches are involved in regulating the gene expression in bacteria. They are located within the untranslated regions of bacterial messenger RNA and function as switches by adjusting their shape, depending on the presence or absence of specific ligands. To decipher the fundamental aspects of bacterial gene control, it is therefore important to understand the mechanisms that underlie these conformational switches. To this end, a combination of an experimental binding study, molecular simulations and machine learning has been employed to obtain insights into the conformational changes and structural dynamics of the guanidine-II riboswitch. By exploiting the design of a bivalent ligand, we were able to study ligand binding in the aptamer dimer at the molecular level. Spontaneous ligand-binding events, which are usually difficult to simulate, were observed and the contributing factors are described. These findings were further confirmed by in vivo experiments, where the cooperative binding effects of the bivalent ligands resulted in increased binding affinity compared to the native guanidinium ligand. Beyond ligand binding itself, the simulations revealed a novel, ligand-dependent base-stacking interaction outside of the binding pocket that stabilizes the riboswitch.
Collapse
Affiliation(s)
- Jakob Steuer
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Malte Sinn
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Franziska Eble
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Sina Rütschlin
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Böttcher
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
9
|
Xiao W, Liu G, Chen T, Zhang Y, Lu C. Bifidobacterium bifidum SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation. Biomolecules 2024; 14:742. [PMID: 39062457 PMCID: PMC11274715 DOI: 10.3390/biom14070742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The Bifidobacterium bifidum SAM-VI riboswitch undergoes dynamic conformational changes that modulate downstream gene expression. Traditional structural methods such as crystallography capture the bound conformation at high resolution, and additional efforts would reveal details from the dynamic transition. Here, we revealed a transcription-dependent conformation model for Bifidobacterium bifidum SAM-VI riboswitch. In this study, we combine small-angle X-ray scattering, chemical probing, and isothermal titration calorimetry to unveil the ligand-binding properties and conformational changes of the Bifidobacterium bifidum SAM-VI riboswitch and its variants. Our results suggest that the SAM-VI riboswitch contains a pre-organized ligand-binding pocket and stabilizes into the bound conformation upon binding to SAM. Whether the P1 stem formed and variations in length critically influence the conformational dynamics of the SAM-VI riboswitch. Our study provides the basis for artificially engineering the riboswitch by manipulating its peripheral sequences without modifying the SAM-binding core.
Collapse
Affiliation(s)
- Wenwen Xiao
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Ting Chen
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Yunlong Zhang
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Changrui Lu
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| |
Collapse
|
10
|
Tants JN, Schlundt A. Advances, Applications, and Perspectives in Small-Angle X-ray Scattering of RNA. Chembiochem 2023; 24:e202300110. [PMID: 37466350 DOI: 10.1002/cbic.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/22/2023] [Indexed: 07/20/2023]
Abstract
RNAs exhibit a plethora of functions far beyond transmitting genetic information. Often, RNA functions are entailed in their structure, be it as a regulatory switch, protein binding site, or providing catalytic activity. Structural information is a prerequisite for a full understanding of RNA-regulatory mechanisms. Owing to the inherent dynamics, size, and instability of RNA, its structure determination remains challenging. Methods such as NMR spectroscopy, X-ray crystallography, and cryo-electron microscopy can provide high-resolution structures; however, their limitations make structure determination, even for small RNAs, cumbersome, if at all possible. Although at a low resolution, small-angle X-ray scattering (SAXS) has proven valuable in advancing structure determination of RNAs as a complementary method, which is also applicable to large-sized RNAs. Here, we review the technological and methodological advancements of RNA SAXS. We provide examples of the powerful inclusion of SAXS in structural biology and discuss possible future applications to large RNAs.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Andreas Schlundt
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
11
|
Focht CM, Hiller DA, Grunseich SG, Strobel SA. Translation regulation by a guanidine-II riboswitch is highly tunable in sensitivity, dynamic range, and apparent cooperativity. RNA (NEW YORK, N.Y.) 2023; 29:1126-1139. [PMID: 37130702 PMCID: PMC10351892 DOI: 10.1261/rna.079560.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Riboswitches function as important translational regulators in bacteria. Comprehensive mutational analysis of transcriptional riboswitches has been used to probe the energetic intricacies of interplay between the aptamer and expression platform, but translational riboswitches have been inaccessible to massively parallel techniques. The guanidine-II (gdm-II) riboswitch is an exclusively translational class. We have integrated RelE cleavage with next-generation sequencing to quantify ligand-dependent changes in translation initiation for all single and double mutations of the Pseudomonas aeruginosa gdm-II riboswitch, a total of more than 23,000 variants. This extensive mutational analysis is consistent with the prominent features of the bioinformatic consensus. These data indicate, unexpectedly, that direct sequestration of the Shine-Dalgarno sequence is dispensable for riboswitch function. Additionally, this comprehensive data set reveals important positions not identified in previous computational and crystallographic studies. Mutations in the variable linker region stabilize alternate conformations. The double mutant data reveal the functional importance of the previously modeled P0b helix formed by the 5' and 3' tails that serves as the basis for translational control. Additional mutations to GU wobble base pairs in both P1 and P2 reveal how the apparent cooperativity of the system involves an intricate network of communication between the two binding sites. This comprehensive examination of a translational riboswitch's expression platform illuminates how the riboswitch is precisely tuned and tunable with regard to ligand sensitivity, the amplitude of expression between ON and OFF states, and the cooperativity of ligand binding.
Collapse
Affiliation(s)
- Caroline M Focht
- Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | - David A Hiller
- Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | - Sabrina G Grunseich
- Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Scott A Strobel
- Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
12
|
Marušič M, Toplishek M, Plavec J. NMR of RNA - Structure and interactions. Curr Opin Struct Biol 2023; 79:102532. [PMID: 36746110 DOI: 10.1016/j.sbi.2023.102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 02/07/2023]
Abstract
RNA was shown to have a more substantial role in the regulation of diverse cellular processes than anticipated until recently. Answers to questions what is the structure of specific RNAs, how structure changes to accommodate different functional roles, and how RNA senses other biomolecules and changes its fold upon interaction create a complete representation of RNA involved in cellular processes. Nuclear magnetic resonance (NMR) spectroscopy encompasses a collection of methods and approaches that offer insight into several structural aspects of RNAs. We review the most recent advances in the field of viral, long non-coding, regulatory, and four-stranded RNAs, with an emphasis on the detection of dynamic sub-states and in view of chemical modifications that expand RNA's function.
Collapse
Affiliation(s)
- Maja Marušič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Maria Toplishek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia; University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Cesta OF 13, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Fuks C, Falkner S, Schwierz N, Hengesbach M. Combining Coarse-Grained Simulations and Single Molecule Analysis Reveals a Three-State Folding Model of the Guanidine-II Riboswitch. Front Mol Biosci 2022; 9:826505. [PMID: 35573739 PMCID: PMC9094411 DOI: 10.3389/fmolb.2022.826505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Riboswitch RNAs regulate gene expression by conformational changes induced by environmental conditions and specific ligand binding. The guanidine-II riboswitch is proposed to bind the small molecule guanidinium and to subsequently form a kissing loop interaction between the P1 and P2 hairpins. While an interaction was shown for isolated hairpins in crystallization and electron paramagnetic resonance experiments, an intrastrand kissing loop formation has not been demonstrated. Here, we report the first evidence of this interaction in cis in a ligand and Mg2+ dependent manner. Using single-molecule FRET spectroscopy and detailed structural information from coarse-grained simulations, we observe and characterize three interconvertible states representing an open and kissing loop conformation as well as a novel Mg2+ dependent state for the guanidine-II riboswitch from E. coli. The results further substantiate the proposed switching mechanism and provide detailed insight into the regulation mechanism for the guanidine-II riboswitch class. Combining single molecule experiments and coarse-grained simulations therefore provides a promising perspective in resolving the conformational changes induced by environmental conditions and to yield molecular insights into RNA regulation.
Collapse
Affiliation(s)
- Christin Fuks
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Falkner
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Computational and Soft Matter Physics, University of Vienna, Vienna, VIA, Austria
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|