1
|
Abstract
The use of enzymes to convert substrates into valuable products has been an integral part of biocatalysis. However, some reactions are energy-demanding that requires the use of NAD(P)H to proceed. This NAD(P)H can be costly impeding the progress of enzyme usage at a bigger scale. The rise of sophisticated cloning methods has allowed the possibility of constructing multi-enzyme complexes such as coupling NAD(P)H-requiring enzymes with NADH-regeneration systems such as formate dehydrogenases. This allows a more-efficient way to recycle co-factors or co-substrates with cheaper sacrificial substrate such as formate for formate dehydrogenases or glucose for glucose dehydrogenases. However, the design of fusion proteins requires careful attention especially on the peptide linker that will be used to connect two protein domains. The length and the property of the linker and even the orientation of the genes encoding for the proteins in the open reading frame can significantly affect the outcome of the fusion protein. In this chapter, we present a step-by-step procedure for the design of a fusion protein construct via Gibson assembly and how to design linker libraries from one construct using site-directed mutagenesis.
Collapse
Affiliation(s)
- Beyzanur Celebi
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Janina Lawniczek
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
2
|
Peng YJ, Xu B, Rokita SE. Breaking the Myth of Enzymatic Azoreduction. ACS Chem Biol 2025; 20:229-237. [PMID: 39707960 DOI: 10.1021/acschembio.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Flavin-dependent azoreductases have been applied to a wide range of tasks from decolorizing numerous azo dyes to releasing azo-conjugated prodrugs. A general narrative reiterated in much of the literature suggests that this enzyme promotes sequential reduction of both the azo-containing substrate and its corresponding hydrazo product to release the aryl amine components while consuming two equivalents of NAD(P)H. Indeed, such aryl amines can be formed by incubation of certain azo compounds with azoreductases, but the nature of the substrates capable of this apparent azo bond lysis remained unknown. We have now prepared a set of azobenzene derivatives and characterized their turnover and products after treatment with azoreductase from Escherichia coli to discover the structural basis regulating aryl amine formation. Without resonance donation by aryl substituents, reduction ceases at the hydrazo product. This indicates that azoreductases do not act on the hydrazo bond. Instead, aryl amine formation depends on a spontaneous hydrazo bond lysis that is promoted by resonance stabilization and subsequent reduction of the quinone-like intermediate by azoreductase. Experimental and computational approaches confirm the substituent dependence of this process. With knowledge of this requirement, full release of aryl amines from azo-conjugates can now be designed and applied with confidence.
Collapse
Affiliation(s)
- Yu-Ju Peng
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Bing Xu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Rolf J, Handke J, Burzinski F, Lütz S, Rosenthal K. Amino acid balancing for the prediction and evaluation of protein concentrations in cell-free protein synthesis systems. Biotechnol Prog 2023; 39:e3373. [PMID: 37408088 DOI: 10.1002/btpr.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Cell-free protein synthesis (CFPS) systems are an attractive method to complement the usual cell-based synthesis of proteins, especially for screening approaches. The literature describes a wide variety of CFPS systems, but their performance is difficult to compare since the reaction components are often used at different concentrations. Therefore, we have developed a calculation tool based on amino acid balancing to evaluate the performance of CFPS by determining the fractional yield as the ratio between theoretically achievable and experimentally achieved protein molar concentration. This tool was applied to a series of experiments from our lab and to various systems described in the literature to identify systems that synthesize proteins very efficiently and those that still have potential for higher yields. The well-established Escherichia coli system showed a high efficiency in the utilization of amino acids, but interestingly, less considered systems, such as those based on Vibrio natriegens or Leishmania tarentolae, also showed exceptional fractional yields of over 70% and 90%, respectively, implying very efficient conversions of amino acids. The methods and tools described here can quickly identify when a system has reached its maximum or has limitations. We believe that this approach will facilitate the evaluation and optimization of existing CFPS systems and provides the basis for the systematic development of new CFPS systems.
Collapse
Affiliation(s)
- Jascha Rolf
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Dortmund, Germany
| | - Julian Handke
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Dortmund, Germany
| | - Frank Burzinski
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Dortmund, Germany
| | | |
Collapse
|
4
|
Ganjave SD, O'Niel RA, Wangikar PP. Rate of dilution and redox ratio influence the refolding efficiency of recombinant fungal dehydrogenases. Int J Biol Macromol 2023; 250:126163. [PMID: 37549766 DOI: 10.1016/j.ijbiomac.2023.126163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Dehydrogenases from fungi are attracting attention as industrial biocatalysts due to their high activity and chiral selectivity. However, these enzymes form insoluble aggregates when overexpressed in E. coli, limiting their industrial application. In the present study, we report the systematic development of a refolding process for selected, industrially relevant fungal dehydrogenases, viz., formate dehydrogenase from Candida boidinii (CbFDH) and formate and alcohol dehydrogenases from Geotrichum candium (GcFDH and GcADH, respectively). We first employed a screen to evaluate the effects of different variables on refolding including the buffer system, additives, and rate of dilution. The extent of refolding was determined by enzyme assays, circular dichroism, and tryptophan fluorescence. Our results showed that glycerol and reducing environment are essential for refolding of these dehydrogenases. Further, slow dilution of solubilized protein over 16 h dramatically improved the recovery of refolded enzymes compared to rapid dilution. The importance of slow dilution was further confirmed in a 10-fold scaled-up refolding trial. Overall, we demonstrate a robust method for refolding of fungal dehydrogenases, thus improving their availability for various biocatalytic applications.
Collapse
Affiliation(s)
- Snehal D Ganjave
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ruchika Annie O'Niel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
5
|
Rolf J, Ngo ACR, Lütz S, Tischler D, Rosenthal K. Cell-Free Protein Synthesis for the Screening of Novel Azoreductases and Their Preferred Electron Donor. Chembiochem 2022; 23:e202200121. [PMID: 35593146 PMCID: PMC9401864 DOI: 10.1002/cbic.202200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/19/2022] [Indexed: 11/26/2022]
Abstract
Azoreductases are potent biocatalysts for the cleavage of azo bonds. Various gene sequences coding for potential azoreductases are available in databases, but many of their gene products are still uncharacterized. To avoid the laborious heterologous expression in a host organism, we developed a screening approach involving cell-free protein synthesis (CFPS) combined with a colorimetric activity assay, which allows the parallel screening of putative azoreductases in a short time. First, we evaluated different CFPS systems and optimized the synthesis conditions of a model azoreductase. With the findings obtained, 10 azoreductases, half of them undescribed so far, were screened for their ability to degrade the azo dye methyl red. All novel enzymes catalyzed the degradation of methyl red and can therefore be referred to as azoreductases. In addition, all enzymes degraded the more complex and bulkier azo dye Brilliant Black and four of them also showed the ability to reduce p-benzoquinone. NADH was the preferred electron donor for the most enzymes, although the synthetic nicotinamide co-substrate analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) was also accepted by all active azoreductases. This screening approach allows accelerated identification of potential biocatalysts for various applications.
Collapse
Affiliation(s)
- Jascha Rolf
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| | - Anna Christina Reyes Ngo
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr-Universität BochumUniversitätsstr. 15044780BochumGermany
| | - Stephan Lütz
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| | - Dirk Tischler
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr-Universität BochumUniversitätsstr. 15044780BochumGermany
| | - Katrin Rosenthal
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| |
Collapse
|
6
|
Ma Y, Zhang N, Vernet G, Kara S. Design of fusion enzymes for biocatalytic applications in aqueous and non-aqueous media. Front Bioeng Biotechnol 2022; 10:944226. [PMID: 35935496 PMCID: PMC9354712 DOI: 10.3389/fbioe.2022.944226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Biocatalytic cascades play a fundamental role in sustainable chemical synthesis. Fusion enzymes are one of the powerful toolboxes to enable the tailored combination of multiple enzymes for efficient cooperative cascades. Especially, this approach offers a substantial potential for the practical application of cofactor-dependent oxidoreductases by forming cofactor self-sufficient cascades. Adequate cofactor recycling while keeping the oxidized/reduced cofactor in a confined microenvironment benefits from the fusion fashion and makes the use of oxidoreductases in harsh non-aqueous media practical. In this mini-review, we have summarized the application of various fusion enzymes in aqueous and non-aqueous media with a focus on the discussion of linker design within oxidoreductases. The design and properties of the reported linkers have been reviewed in detail. Besides, the substrate loadings in these studies have been listed to showcase one of the key limitations (low solubility of hydrophobic substrates) of aqueous biocatalysis when it comes to efficiency and economic feasibility. Therefore, a straightforward strategy of applying non-aqueous media has been briefly discussed while the potential of using the fusion oxidoreductase of interest in organic media was highlighted.
Collapse
Affiliation(s)
- Yu Ma
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Ningning Zhang
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Guillem Vernet
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Selin Kara,
| |
Collapse
|
7
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|