1
|
Korotenko V, Langrzyk P, Zipse H. Computational Prediction of One-Electron Oxidation Potentials for Cytosine and Uracil Epigenetic Derivatives. J Phys Chem A 2025; 129:4339-4356. [PMID: 40199460 DOI: 10.1021/acs.jpca.4c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Knowledge of the redox properties of cytosine (C), uracil (U), and their natural derivatives is essential for a deeper understanding of DNA damage, repair, and epigenetic regulation. This study investigates the one-electron oxidation potential (Eox, V) using DFT (B3LYP-D3) and DLPNO-CCSD(T) methods with explicit/implicit (SMD) solvation model. Calculations in the gas phase and aprotic solvents such as acetonitrile showed a high correlation with experimental data (0.96-0.98). In aqueous solutions at pH 7, oxidation potentials are significantly influenced by deprotonation equilibria, as acidic molecules like 5caC become easier to oxidize upon deprotonation. The resulting oxidation potentials reflect a complex interplay of substituent effects, acidity, and protonation states. A pH-dependent model based on the Nernst equation for aqueous solutions demonstrated a correlation coefficient of 0.93. The calculated Eox values for cytosine epigenetic derivatives in water, accounting for deprotonation effects, follow the trend: d_5caC < 5mC < 5caC < 5hmC < C < 5dhmC < 5fC, where "d_" deprotonated, "5ca" 5-carboxy, "5m" 5-methyl, "5hm" 5-hydroxymethyl, "5dhm" 5-dihydroxymethyl, "5f" 5-formyl.
Collapse
Affiliation(s)
- Vasilii Korotenko
- Thermal Separation Processes, TUHH, Denickestraße 22, 21073 Hamburg, Germany
- Department of Chemistry, LMU München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Patrick Langrzyk
- Laboratory of Asymmetric Catalysis and Synthesis (LACS), EPFL, CH-1015 Lausanne, Switzerland
- Department of Chemistry, LMU München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Hendrik Zipse
- Department of Chemistry, LMU München, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
2
|
Quadrado RFN, Zhai Z, Zavadinack M, Klassen G, Iacomini M, Edgar KJ, Fajardo AR. All-polysaccharide, self-healing, pH-sensitive, in situ-forming hydrogel of carboxymethyl chitosan and aldehyde-functionalized hydroxyethyl cellulose. Carbohydr Polym 2024; 336:122105. [PMID: 38670749 DOI: 10.1016/j.carbpol.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
In situ forming hydrogels are promising for biomedical applications, especially in drug delivery. The precursor solution can be injected at the target site, where it undergoes a sol-gel transition to afford a hydrogel. In this sense, the most significant characteristic of these hydrogels is fast gelation behavior after injection. This study describes an all-polysaccharide, rapidly in situ-forming hydrogel composed of carboxymethyl chitosan (CMCHT) and hydroxyethyl cellulose functionalized with aldehyde groups (HEC-Ald). The HEC-Ald was synthesized through acetal functionalization, followed by acid deprotection. This innovative approach avoids cleavage of pyran rings, as is inherent in the periodate oxidation approach, which is the most common method currently employed for adding aldehyde groups to polysaccharides. The resulting hydrogel exhibited fast stress relaxation, self-healing properties, and pH sensitivity, which allowed it to control the release of an encapsulated model drug in response to the medium pH. Based on the collected data, the HEC-Ald/CMCHT hydrogels show promise as pH-sensitive drug carriers.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, USA
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Gusti Ngurah Putu EP, Cattiaux L, Lavergne T, Pommier Y, Bombard S, Granzhan A. Unprecedented reactivity of polyamines with aldehydic DNA modifications: structural determinants of reactivity, characterization and enzymatic stability of adducts. Nucleic Acids Res 2023; 51:10846-10866. [PMID: 37850658 PMCID: PMC10639052 DOI: 10.1093/nar/gkad837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.
Collapse
Affiliation(s)
- Eka Putra Gusti Ngurah Putu
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Laurent Cattiaux
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Thomas Lavergne
- DCM, CNRS UMR5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Yves Pommier
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, CCR-NCI, NIH, Bethesda, MD 20892, USA
| | - Sophie Bombard
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Anton Granzhan
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
4
|
Karton A, Greatrex BW, O'Reilly RJ. Intramolecular Proton-Coupled Hydride Transfers with Relatively Low Activation Barriers. J Phys Chem A 2023. [PMID: 37368352 DOI: 10.1021/acs.jpca.3c03166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We report that bifunctional molecules containing hydroxyl and carbonyl functional groups can undergo an effective transfer hydrogenation via an intramolecular proton-coupled hydride transfer (PCHT) mechanism. In this reaction mechanism, a hydride transfer between two carbon atoms is coupled with a proton transfer between two oxygen atoms via a cyclic bond rearrangement transition structure. The coupled transfer of the two hydrogens as Hδ+ and Hδ- is supported by atomic polar tensor charges. The activation energy for the PCHT reaction is strongly dependent on the length of the alkyl chain between the hydroxyl and carbonyl functional groups but relatively weakly dependent on the functional groups attached to the hydroxyl and carbonyl carbons. We investigate the PCHT reaction mechanism using the Gaussian-4 thermochemical protocol and obtain high activation energy barriers (ΔH‡298) of 210.5-228.3 kJ mol-1 for chain lengths of one carbon atom and 160.2-163.9 kJ mol-1 for chain lengths of two carbon atoms. However, for longer chain lengths containing 3-4 carbon atoms, we obtain ΔH‡298 values as low as 101.9 kJ mol-1. Importantly, the hydride transfer between two carbon atoms proceeds without the need for a catalyst or hydride transfer activating agent. These results indicate that the intramolecular PCHT reaction provides an effective avenue for uncatalyzed, metal-free hydride transfers at ambient temperatures.
Collapse
Affiliation(s)
- Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Ben W Greatrex
- School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia
| | - Robert J O'Reilly
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|