1
|
Britt HM, Robinson CV. Traversing the drug discovery landscape using native mass spectrometry. Curr Opin Struct Biol 2025; 91:102993. [PMID: 39893771 DOI: 10.1016/j.sbi.2025.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
As health needs in our society evolve, the field of drug discovery must undergo constant innovation and improvement to identify novel targets and drug candidates. Owing to its ability to simultaneously capture biological interactions and provide in-depth molecular characterisation of the species involved, native mass spectrometry is starting to play an important role in this endeavour. Here, we discuss recent contributions that native mass spectrometry has made to drug discovery including deciphering protein-small molecule interactions, unravelling biochemical pathways, and integrating with complementary structural approaches.
Collapse
Affiliation(s)
- Hannah M Britt
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Kirkman T, Dos Santos Silva C, Tosin M, Bertacine Dias MV. How to Find a Fragment: Methods for Screening and Validation in Fragment-Based Drug Discovery. ChemMedChem 2024; 19:e202400342. [PMID: 39198213 DOI: 10.1002/cmdc.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Fragment-based drug discovery (FBDD) is a crucial strategy for developing new drugs that have been applied to diverse targets, from neglected infectious diseases to cancer. With at least seven drugs already launched to the market, this approach has gained interest in both academics and industry in the last 20 years. FBDD relies on screening small libraries with about 1000-2000 compounds of low molecular weight (about 300 Da) using several biophysical methods. Because of the reduced size of the compounds, the chemical space and diversity can be better explored than large libraries used in high throughput screenings. This review summarises the most common biophysical techniques used in fragment screening and orthogonal validation. We also explore the advantages and drawbacks of the different biophysical techniques and examples of applications and strategies.
Collapse
Affiliation(s)
- Tim Kirkman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP, Brazil
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Okpara M, Vaaltyn MC, Watson JL, Alhassan M, Albericio F, de la Torre BG, Clarke DJ, Veale CGL, Edkins AL. Modulators of the Hop-HSP90 Protein-Protein Interaction Disrupt KSHV Lytic Replication. ACS Infect Dis 2024; 10:3853-3867. [PMID: 39475219 PMCID: PMC11555673 DOI: 10.1021/acsinfecdis.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/09/2024]
Abstract
The central role of the chaperome in maintaining cellular proteostasis has seen numerous viral families evolve to parasitically exploit host chaperones in their life cycle. The HSP90 chaperone protein and its cochaperone Hop have both individually been shown to be essential factors for Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. Given the fundamental regulatory role that protein-protein interactions (PPIs) play in cellular biology, we reasoned that disrupting the Hop-HSP90 PPI may provide a new host-based target for inhibiting KSHV lytic replication. This study expands upon a previous report of non-natural peptides, which were found to disrupt the association between the HopTPR2A domain and its interacting HSP90CTD. Here, in addition to providing insight into the structure-activity relationships of PPI inhibition, we show disruption of the full-length Hop-HSP90 PPI. The inhibitory peptides selectively engaged the HopTPR2A domain in cell lysates and when tethered to a cell-penetrating peptide acted as noncytotoxic inhibitors of KSHV lytic replication by lowering the viral load, preventing the production of infectious virions, and reducing the expression of KSHV lytic genes. In addition to tentative evidence of Hop-HSP90 PPI as a much-needed target for KSHV drug discovery, this study represents an important step in understanding viral interactions with the host proteostasis machinery.
Collapse
Affiliation(s)
- Michael
O. Okpara
- Biomedical
Biotechnology Research Unit (BioBRU), Department of Biochemistry and
Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Michaelone C. Vaaltyn
- Biomedical
Biotechnology Research Unit (BioBRU), Department of Biochemistry and
Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Jessica L. Watson
- Biomedical
Biotechnology Research Unit (BioBRU), Department of Biochemistry and
Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Mahama Alhassan
- School
of Chemistry and Physics, University of
Kwa-Zulu Natal, Durban, Westville 4001, South Africa
| | - Fernando Albericio
- School
of Chemistry and Physics, University of
Kwa-Zulu Natal, Durban, Westville 4001, South Africa
| | - Beatriz G. de la Torre
- School
of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4041, South Africa
| | - David J. Clarke
- EaStCHEM,
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH93FJ, United Kingdom
| | - Clinton G. L. Veale
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Adrienne L. Edkins
- Biomedical
Biotechnology Research Unit (BioBRU), Department of Biochemistry and
Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
4
|
Sternicki LM, Poulsen SA. Fragment-based drug discovery campaigns guided by native mass spectrometry. RSC Med Chem 2024; 15:2270-2285. [PMID: 39026646 PMCID: PMC11253872 DOI: 10.1039/d4md00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Native mass spectrometry (nMS) is well established as a biophysical technique for characterising biomolecules and their interactions with endogenous or investigational small molecule ligands. The high sensitivity mass measurements make nMS particularly well suited for applications in fragment-based drug discovery (FBDD) screening campaigns where the detection of weakly binding ligands to a target biomolecule is crucial. We first reviewed the contributions of nMS to guiding FBDD hit identification in 2013, providing a comprehensive perspective on the early adoption of nMS for fragment screening. Here we update this initial progress with a focus on contributions of nMS that have guided FBDD for the period 2014 until end of 2023. We highlight the development of nMS adoption in FBDD in the context of other biophysical fragment screening techniques. We also discuss the roadmap for increased adoption of nMS for fragment screening beyond soluble proteins, including for guiding the discovery of fragments supporting advances in PROTAC discovery, RNA-binding small molecules and covalent therapeutic drug discovery.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| |
Collapse
|
5
|
Phan M, Chandrashekaran IR, Akhtar N, Konstantinidou E, Devine SM, Doak BC, Nebl T, Creek DJ, Scanlon MJ, Norton RS. Multiplexed Native Mass Spectrometry Determination of Ligand Selectivity for Fatty Acid-Binding Proteins. ACS Med Chem Lett 2024; 15:1071-1079. [PMID: 39015264 PMCID: PMC11247632 DOI: 10.1021/acsmedchemlett.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Although multiple approaches for characterizing protein-ligand interactions are available in target-based drug discovery, their throughput for determining selectivity is quite limited. Herein, we describe the application of native mass spectrometry for rapid, multiplexed screening of the selectivity of eight small-molecule ligands for five fatty acid-binding protein isoforms. Using high-resolution mass spectrometry, we were able to identify and quantify up to 20 different protein species in a single spectrum. We show that selectivity profiles generated by native mass spectrometry are in good agreement with those of traditional solution-phase techniques such as isothermal titration calorimetry and fluorescence polarization. Furthermore, we propose strategies for effective investigation of selectivity by native mass spectrometry, thus highlighting the potential of this technique to be used as an orthogonal method to traditional biophysical approaches for rapid, multiplexed screening of protein-ligand complexes.
Collapse
Affiliation(s)
- Michelle
Q. Phan
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Indu R. Chandrashekaran
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Naureen Akhtar
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Evgenia Konstantinidou
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bradley C. Doak
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas Nebl
- Biologics
Research and Development Group, Biomedical Manufacturing Program, CSIRO, Clayton, Victoria 3168, Australia
| | - Darren J. Creek
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Martin J. Scanlon
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S. Norton
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Woodhead AJ, Erlanson DA, de Esch IJP, Holvey RS, Jahnke W, Pathuri P. Fragment-to-Lead Medicinal Chemistry Publications in 2022. J Med Chem 2024; 67:2287-2304. [PMID: 38289623 DOI: 10.1021/acs.jmedchem.3c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
This Perspective is the eighth in an annual series that summarizes successful fragment-to-lead (F2L) case studies published each year. A tabulated summary of relevant articles published in 2022 is provided, and features such as target class, screening methods, and ligand efficiency are discussed both for the 2022 examples and for the combined examples over the years 2015-2022. In addition, trends and new developments in the field are summarized. In 2022, 18 publications described successful fragment-to-lead studies, including the development of three clinical compounds (MTRX1719, MK-8189, and BI-823911).
Collapse
Affiliation(s)
- Andrew J Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Blvd., South San Francisco, California 94080, United States
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rhian S Holvey
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Wolfgang Jahnke
- Novartis Biomedical Research, Discovery Sciences, 4002 Basel, Switzerland
| | - Puja Pathuri
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
7
|
Sternicki LM, Poulsen SA. Native Mass Spectrometry: Insights and Opportunities for Targeted Protein Degradation. Anal Chem 2023; 95:18655-18666. [PMID: 38090751 DOI: 10.1021/acs.analchem.3c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Native mass spectrometry (nMS) is one of the most powerful biophysical methods for the direct observation of noncovalent protein interactions with both small molecules and other proteins. With the advent of targeted protein degradation (TPD), nMS is now emerging as a compelling approach to characterize the multiple fundamental interactions that underpin the TPD mechanism. Specifically, nMS enables the simultaneous observation of the multiple binary and ternary complexes [i.e., all combinations of E3 ligase, target protein of interest, and small molecule proximity-inducing reagents (such as PROteolysis TArgeting Chimeras (PROTACs) and molecular glues)], formed as part of the TPD equilibrium; this is not possible with any other biophysical method. In this paper we overview the proof-of-concept applications of nMS within the field of TPD and demonstrate how it is providing researchers with critical insight into the systems under study. We also provide an outlook on the scope and future opportunities offered by nMS as a core and agnostic biophysical tool for advancing research developments in TPD.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|