1
|
Cheng F, Zhou YL, Yang DC, Zhao DY, Xue YP, Zheng YG. Advances in biosynthesis of chiral amide herbicides and the key enzymes: dimethenamid-P and S-metolachlor as case studies. BIORESOUR BIOPROCESS 2025; 12:17. [PMID: 40064833 PMCID: PMC11893949 DOI: 10.1186/s40643-025-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Chiral amide herbicides represent a significant class of agrochemicals, widely used for effective weed control. Prominent examples include S-metolachlor and dimethenamid-P, both of which share the intermediate (S)-1-methoxy-2-propylamine, a key structural component in their synthesis. Developing green and sustainable methods for producing this intermediate is crucial for enhancing the environmental and economic feasibility of herbicide manufacturing. Biosynthesis, with its advantages in sustainability and efficiency, has emerged as a pivotal approach in pesticide production. This review explores the classification and current development status of chiral amide herbicides, including their varieties and applications in the agricultural market. It outlines the synthesis pathways for S-metolachlor and dimethenamid-P, covering both chemical and biosynthetic routes. The review also highlights the functional properties of the key enzymes involved in the biosynthesis of (S)-1-methoxy-2-propylamine, focusing on the potential for enzyme engineering and creation to optimize these pathways. The challenges and future development directions for amide herbicides are discussed, with an emphasis on overcoming synthetic and ecological barriers.
Collapse
Affiliation(s)
- Feng Cheng
- Zhejiang Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi-Ling Zhou
- Zhejiang Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dan-Chen Yang
- Zhejiang Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ding-Yi Zhao
- Zhejiang Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Zhejiang Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Zhejiang Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
2
|
Marchini V, Paradisi F. Self-sufficient biocatalytic cascade for the continuous synthesis of danshensu in flow. Appl Microbiol Biotechnol 2025; 109:13. [PMID: 39836219 PMCID: PMC11750938 DOI: 10.1007/s00253-025-13407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD+ as cofactor. Furthermore, the bienzymatic system was implemented as a packed-bed reactor in continuous flow, achieving a conversion rate up to 80% with 60 min retention time. The process was further intensified by implementing a 48-h flow bioreaction. The biocatalysts demonstrated remarkable stability, retaining 62% of their initial activity at the end of the process. The final productivity of the isolated compound (96% purity) was calculated to be 1.84 g L-1 h-1 yielding a sustainable synthesis of danshensu. KEY POINTS: • Characterization of the hydroxyphenylpyruvate reductase from Mentha x piperita • Bi-enzymatic system in a cascade reaction to produce danshensu • Purification and isolation of the active compound danshensu.
Collapse
Affiliation(s)
- Valentina Marchini
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- inSEIT AG, Freiestrasse 3, 3012, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| |
Collapse
|
3
|
Hormigo D, Del Arco J, Acosta J, Fürst MJLJ, Fernández-Lucas J. Engineering a Bifunctional Fusion Purine/Pyrimidine Nucleoside Phosphorylase for the Production of Nucleoside Analogs. Biomolecules 2024; 14:1196. [PMID: 39334962 PMCID: PMC11430618 DOI: 10.3390/biom14091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Nucleoside phosphorylases (NPs) are pivotal enzymes in the salvage pathway, catalyzing the reversible phosphorolysis of nucleosides to produce nucleobases and α-D-ribose 1-phosphate. Due to their efficiency in catalyzing nucleoside synthesis from purine or pyrimidine bases, these enzymes hold significant industrial importance in the production of nucleoside-based drugs. Given that the thermodynamic equilibrium for purine NPs (PNPs) is favorable for nucleoside synthesis-unlike pyrimidine NPs (PyNPs, UP, and TP)-multi-enzymatic systems combining PNPs with PyNPs, UPs, or TPs are commonly employed in the synthesis of nucleoside analogs. In this study, we report the first development of two engineered bifunctional fusion enzymes, created through the genetic fusion of purine nucleoside phosphorylase I (PNP I) and thymidine phosphorylase (TP) from Thermus thermophilus. These fusion constructs, PNP I/TP-His and TP/PNP I-His, provide an innovative one-pot, single-step alternative to traditional multi-enzymatic synthesis approaches. Interestingly, both fusion enzymes retain phosphorolytic activity for both purine and pyrimidine nucleosides, demonstrating significant activity at elevated temperatures (60-90 °C) and within a pH range of 6-8. Additionally, both enzymes exhibit high thermal stability, maintaining approximately 80-100% of their activity when incubated at 60-80 °C over extended periods. Furthermore, the transglycosylation capabilities of the fusion enzymes were explored, demonstrating successful catalysis between purine (2'-deoxy)ribonucleosides and pyrimidine bases, and vice versa. To optimize reaction conditions, the effects of pH and temperature on transglycosylation activity were systematically examined. Finally, as a proof of concept, these fusion enzymes were successfully employed in the synthesis of various purine and pyrimidine ribonucleoside and 2'-deoxyribonucleoside analogs, underscoring their potential as versatile biocatalysts in nucleoside-based drug synthesis.
Collapse
Affiliation(s)
- Daniel Hormigo
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Villaviciosa de Odón, 28670 Madrid, Spain; (D.H.); (J.D.A.); (J.A.)
| | - Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Villaviciosa de Odón, 28670 Madrid, Spain; (D.H.); (J.D.A.); (J.A.)
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Villaviciosa de Odón, 28670 Madrid, Spain; (D.H.); (J.D.A.); (J.A.)
| | - Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Feringa Building, 9747 AG Groningen, The Netherlands
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Villaviciosa de Odón, 28670 Madrid, Spain; (D.H.); (J.D.A.); (J.A.)
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla 080002, Colombia
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain
| |
Collapse
|
4
|
Amati A, Moning SU, Javor S, Schär S, Deutschmann S, Reymond JL, von Ballmoos C. Overcoming Protein Orientation Mismatch Enables Efficient Nanoscale Light-Driven ATP Production. ACS Synth Biol 2024; 13:1355-1364. [PMID: 38569139 PMCID: PMC11036485 DOI: 10.1021/acssynbio.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Adenosine triphosphate (ATP)-producing modules energized by light-driven proton pumps are powerful tools for the bottom-up assembly of artificial cell-like systems. However, the maximum efficiency of such modules is prohibited by the random orientation of the proton pumps during the reconstitution process into lipid-surrounded nanocontainers. Here, we overcome this limitation using a versatile approach to uniformly orient the light-driven proton pump proteorhodopsin (pR) in liposomes. pR is post-translationally either covalently or noncovalently coupled to a membrane-impermeable protein domain guiding orientation during insertion into preformed liposomes. In the second scenario, we developed a novel bifunctional linker, trisNTA-SpyTag, that allows for the reversible connection of any SpyCatcher-containing protein and a HisTag-carrying protein. The desired protein orientations are verified by monitoring vectorial proton pumping and membrane potential generation. In conjunction with ATP synthase, highly efficient ATP production is energized by the inwardly pumping population. In comparison to other light-driven ATP-producing modules, the uniform orientation allows for maximal rates at economical protein concentrations. The presented technology is highly customizable and not limited to light-driven proton pumps but applicable to many membrane proteins and offers a general approach to overcome orientation mismatch during membrane reconstitution, requiring little to no genetic modification of the protein of interest.
Collapse
Affiliation(s)
| | | | - Sacha Javor
- Department of Chemistry, Biochemistry
and Pharmaceutical Sciences, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Sandra Schär
- Department of Chemistry, Biochemistry
and Pharmaceutical Sciences, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry
and Pharmaceutical Sciences, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry
and Pharmaceutical Sciences, University
of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Xu JM, Wu ZS, Zhao KJ, Xi ZJ, Wang LY, Cheng F, Xue YP, Zheng YG. IPTG-induced high protein expression for whole-cell biosynthesis of L-phosphinothricin. Biotechnol J 2023; 18:e2300027. [PMID: 37265188 DOI: 10.1002/biot.202300027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second E. coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U g-1 and 896.23 U g-1 , respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U g-1 and 109.70 U g-1 , respectively. The 200 mM D-PPT was biocatalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhou-Sheng Wu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ke-Ji Zhao
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi-Jie Xi
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Liu-Yu Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
6
|
Dedeakayoğulları H, Valjakka J, Turunen O, Yilmazer B, Demir Ğ, Jänis J, Binay B. Application of reductive amination by heterologously expressed Thermomicrobium roseumL-alanine dehydrogenase to synthesize L-alanine derivatives. Enzyme Microb Technol 2023; 169:110265. [PMID: 37269617 DOI: 10.1016/j.enzmictec.2023.110265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Unnatural amino acids are unique building blocks in modern medicinal chemistry as they contain an amino and a carboxylic acid functional group, and a variable side chain. Synthesis of pure unnatural amino acids can be made through chemical modification of natural amino acids or by employing enzymes that can lead to novel molecules used in the manufacture of various pharmaceuticals. The NAD+ -dependent alanine dehydrogenase (AlaDH) enzyme catalyzes the conversion of pyruvate to L-alanine by transferring ammonium in a reversible reductive amination activity. Although AlaDH enzymes have been widely studied in terms of oxidative deamination activity, reductive amination activity studies have been limited to the use of pyruvate as a substrate. The reductive amination potential of heterologously expressed, highly pure Thermomicrobium roseum alanine dehydrogenase (TrAlaDH) was examined with regard to pyruvate, α-ketobutyrate, α-ketovalerate and α-ketocaproate. The biochemical properties were studied, which included the effects of 11 metal ions on enzymatic activity for both reactions. The enzyme accepted both derivatives of L-alanine (in oxidative deamination) and pyruvate (in reductive amination) as substrates. While the kinetic KM values associated with the pyruvate derivatives were similar to pyruvate values, the kinetic kcat values were significantly affected by the side chain increase. In contrast, KM values associated with the derivatives of L-alanine (L-α-aminobutyrate, L-norvaline, and L-norleucine) were approximately two orders of magnitude greater, which would indicate that they bind very poorly in a reactive way to the active site. The modeled enzyme structure revealed differences in the molecular orientation between L-alanine/pyruvate and L-norleucine/α-ketocaproate. The reductive activity observed would indicate that TrAlaDH has potential for the synthesis of pharmaceutically relevant amino acids.
Collapse
Affiliation(s)
- Huri Dedeakayoğulları
- Medical Biochemistry Department, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Jarkko Valjakka
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Berin Yilmazer
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Ğarip Demir
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey; BAUZYME Biotechnology Co., Gebze Technical University Technopark, Gebze, 41400 Kocaeli, Turkey.
| |
Collapse
|
7
|
Benítez-Mateos AI, Paradisi F. Halomonas elongata: a microbial source of highly stable enzymes for applied biotechnology. Appl Microbiol Biotechnol 2023; 107:3183-3190. [PMID: 37052635 PMCID: PMC10160191 DOI: 10.1007/s00253-023-12510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Extremophilic microorganisms, which are resistant to extreme levels of temperature, salinity, pH, etc., have become popular tools for biotechnological applications. Due to their availability and cost-efficacy, enzymes from extremophiles are getting the attention of researchers and industries in the field of biocatalysis to catalyze diverse chemical reactions in a selective and sustainable manner. In this mini-review, we discuss the advantages of Halomonas elongata as moderate halophilic bacteria to provide suitable enzymes for biotechnology. While enzymes from H. elongata are more resistant to the presence of salt compared to their mesophilic counterparts, they are also easier to produce in heterologous hosts compared with more extremophilic microorganisms. Herein, a set of different enzymes (hydrolases, transferases, and oxidoreductases) from H. elongata are showcased, highlighting their interesting properties as more efficient and sustainable biocatalysts. With this, we aim to improve the visibility of halotolerant enzymes and their uncommon properties to integrate biocatalysis in industrial set-ups. KEYPOINTS: • Production and use of halotolerant enzymes can be easier than strong halophilic ones. • Enzymes from halotolerant organisms are robust catalysts under harsh conditions. • Halomonas elongata has shown a broad enzyme toolbox with biotechnology applications.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|