1
|
Yang Y, Li Z, Zhang J, Qi H. Engineering thermostable friend mouse leukemia virus reverse transcriptase through mutational combination. Biochem Biophys Res Commun 2025; 760:151716. [PMID: 40164014 DOI: 10.1016/j.bbrc.2025.151716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Reverse transcriptase (RTs) is an essential tool in molecular biology and medical research; however, its typical lack of thermostability poses significant limitations. In this study, we engineered thermostable RTs derived from Friend mouse leukemia virus reverse transcriptase (FrMLV RT) through a mutational combination. The thermostable FrM5 variant (D178C/E280R/T284R/W291F/L581W) is obtained through iterative rounds of mutational combination and rapid cell-free RTs activity assays. The FrM5 variant exhibited robust RTs activity across a broad temperature range (35-50 °C) with the template-primer (T/P). Notably, the half-life of the FrM5 variant at 50 °C was approximately 20 min, in contrast to less than 2 min for the wild-type (FrWT) in the presence of T/P. Furthermore, the melting temperature difference between the FrWT and FrM5 variants was less than 2 °C, regardless of the presence or absence of T/P. Finally, we demonstrated that FrM5 exhibits tighter binding to T/P, which likely protects against heat inactivation. This advancement could substantially improve the efficiency and accuracy of molecular biology and medical research applications.
Collapse
Affiliation(s)
- Youhui Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
| | - Zhong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
| | - Jie Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
2
|
Bizat PN, Sabat N, Hollenstein M. Recent Advances in Biocatalytic and Chemoenzymatic Synthesis of Oligonucleotides. Chembiochem 2025; 26:e202400987. [PMID: 39854143 DOI: 10.1002/cbic.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Access to synthetic oligonucleotides is crucial for applications in diagnostics, therapeutics, synthetic biology, and nanotechnology. Traditional solid phase synthesis is limited by sequence length and complexities, low yields, high costs and poor sustainability. Similarly, polymerase-based approaches such as in vitro transcription and primer extension reactions do not permit any control on the positioning of modifications and display poor substrate tolerance. In response, biocatalytic and chemoenzymatic strategies have emerged as promising alternatives, offering selective and efficient pathways for oligonucleotide synthesis. These methods leverage the precision and efficiency of enzymes to construct oligonucleotides with high fidelity. Recent advancements have focused on optimized systems and/or engineered enzymes enabling the incorporation of chemically modified nucleotides. Biocatalytic approaches, particularly those using DNA/RNA polymerases provide advantages in milder reaction conditions and enhanced sustainability. Chemoenzymatic methods, combining chemical synthesis and enzymes, have proven to be effective in overcoming limitations of traditional solid phase synthesis. This review summarizes recent developments in biocatalytic and chemoenzymatic strategies to construct oligonucleotides, highlighting innovations in enzyme engineering, substrate and reaction condition optimization for various applications. We address crucial details of the methods, their advantages, and limitations as well as important insights for future research directions in oligonucleotide production.
Collapse
Affiliation(s)
- Pierre Nicolas Bizat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
3
|
Liu J, Zhang J, Zhao T, Zhao M, Su M, Chen Y, Huang Z, Wang Y, Zhong C, Hu Z, Zhou P, Tian R, He D. SunTag-PE: a modular prime editing system enables versatile and efficient genome editing. Commun Biol 2025; 8:452. [PMID: 40097588 PMCID: PMC11914589 DOI: 10.1038/s42003-025-07893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Prime editing (PE) holds tremendous potential in the treatment of genetic diseases because it can install any desired base substitution or local insertion/deletion. However, the full-length PE effector size (6.3-kb) is beyond the packaging capacity of adeno-associated virus (AAV), hindering its clinical translation. Various splitting strategies have been used to improve its delivery, but always accompanied by compromised PE efficiency. Here, we developed a modular and efficient SunTag-PE system that splits PE effectors into GCN4-nCas9 and single-chain variable fragment (scFv) tethered reverse transcriptase (RT). We observed that SunTag-PEs with 1×GCN4 in the N terminus of nCas9 was the most efficient configuration rather than multiple copies of GCN4. This SunTag-PE strategy achieved editing levels comparable to canonical fused-PE (nCas9 and RT are linked together) and higher than other split-PE strategies (including sPE and MS2-PE) in both PE2 and PE3 forms with no increase in insertion and deletion (indel) byproducts. Moreover, we successfully validated the modularity of SunTag-PE system in the Cas9 orthologs of SauCas9 and FrCas9. Finally, we employed dual AAVs to deliver SunTag-ePE3 and efficiently corrected the pathogenic mutation in HBB mutant cell line. Collectively, our SunTag-PE system provides an efficient modular splitting strategy for prime editing and further facilitate its transformation in clinics.
Collapse
Affiliation(s)
- Jiashuo Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | | | - Mengya Zhao
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Su
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ye Chen
- Department of Gynecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheying Huang
- Department of Gynecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuyan Wang
- Department of Gynecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Zheng Hu
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan, China.
| | - Rui Tian
- Generulor Co., Ltd. Zhuhai, Guangdong, China.
| | - Dan He
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Dhara D, Mulard LA, Hollenstein M. Natural, modified and conjugated carbohydrates in nucleic acids. Chem Soc Rev 2025; 54:2948-2983. [PMID: 39936337 DOI: 10.1039/d4cs00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.
Collapse
Affiliation(s)
- Debashis Dhara
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Laurence A Mulard
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
5
|
Martínez del Río J, Menéndez-Arias L. Next-Generation Sequencing Methods to Determine the Accuracy of Retroviral Reverse Transcriptases: Advantages and Limitations. Viruses 2025; 17:173. [PMID: 40006928 PMCID: PMC11861041 DOI: 10.3390/v17020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Retroviruses, like other RNA viruses, mutate at very high rates and exist as genetically heterogeneous populations. The error-prone activity of viral reverse transcriptase (RT) is largely responsible for the observed variability, most notably in HIV-1. In addition, RTs are widely used in biotechnology to detect RNAs and to clone expressed genes, among many other applications. The fidelity of retroviral RTs has been traditionally analyzed using enzymatic (gel-based) or reporter-based assays. However, these methods are laborious and have important limitations. The development of next-generation sequencing (NGS) technologies opened the possibility of obtaining reverse transcription error rates from a large number of sequences, although appropriate protocols had to be developed. In this review, we summarize the developments in this field that allowed the determination of RNA-dependent DNA synthesis error rates for different RTs (viral and non-viral), including methods such as PRIMER IDs, REP-SEQ, ARC-SEQ, CIR-SEQ, SMRT-SEQ and ROLL-SEQ. Their advantages and limitations are discussed. Complementary DNA (cDNA) synthesis error rates obtained in different studies, using RTs and RNAs of diverse origins, are presented and compared. Future improvements in methodological pipelines will be needed for the precise identification of mutations in the RNA template, including modified bases.
Collapse
Affiliation(s)
- Javier Martínez del Río
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
6
|
Tomilova YE, Russkikh NE, Yi IM, Shaburova EV, Tomilov VN, Pyrinova GB, Brezhneva SO, Tikhonyuk OS, Gololobova NS, Popichenko DV, Arkhipov MO, Bryzgalov LO, Brenner EV, Artyukh AA, Shtokalo DN, Antonets DV, Ivanov MK. Enhancing the reverse transcriptase function in Taq polymerase via AI-driven multiparametric rational design. Front Bioeng Biotechnol 2024; 12:1495267. [PMID: 39720166 PMCID: PMC11666352 DOI: 10.3389/fbioe.2024.1495267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Modification of natural enzymes to introduce new properties and enhance existing ones is a central challenge in bioengineering. This study is focused on the development of Taq polymerase mutants that show enhanced reverse transcriptase (RTase) activity while retaining other desirable properties such as fidelity, 5'- 3' exonuclease activity, effective deoxyuracyl incorporation, and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective was to use AI-driven rational design combined with multiparametric wet-lab analysis to identify and validate Taq polymerase mutants with an optimal combination of these properties. Methods The experimental procedure was conducted in several stages: 1) On the basis of a foundational paper, we selected 18 candidate mutations known to affect RTase activity across six sites. These candidates, along with the wild type, were assessed in the wet lab for multiple properties to establish an initial training dataset. 2) Using embeddings of Taq polymerase variants generated by a protein language model, we trained a Ridge regression model to predict multiple enzyme properties. This model guided the selection of 14 new candidates for experimental validation, expanding the dataset for further refinement. 3) To better manage risk by assessing confidence intervals on predictions, we transitioned to Gaussian process regression and trained this model on an expanded dataset comprising 33 data points. 4) With this enhanced model, we conducted an in silico screen of over 18 million potential mutations, narrowing the field to 16 top candidates for comprehensive wet-lab evaluation. Results and Discussion This iterative, data-driven strategy ultimately led to the identification of 18 enzyme variants that exhibited markedly improved RTase activity while maintaining a favorable balance of other key properties. These enhancements were generally accompanied by lower Kd, moderately reduced fidelity, and greater tolerance to noncanonical substrates, thereby illustrating a strong interdependence among these traits. Several enzymes validated via this procedure were effective in single-enzyme real-time reverse-transcription PCR setups, implying their utility for the development of new tools for real-time reverse-transcription PCR technologies, such as pathogen RNA detection and gene expression analysis. This study illustrates how AI can be effectively integrated with experimental bioengineering to enhance enzyme functionality systematically. Our approach offers a robust framework for designing enzyme mutants tailored to specific biotechnological applications. The results of our biological activity predictions for mutated Taq polymerases can be accessed at https://huggingface.co/datasets/nerusskikh/taqpol_insilico_dms.
Collapse
Affiliation(s)
| | | | | | - Elizaveta V. Shaburova
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | - Dmitry N. Shtokalo
- AcademGene LLC, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Informatics Systems SB RAS, Novosibirsk, Russia
| | - Denis V. Antonets
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail K. Ivanov
- AO Vector-Best, Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| |
Collapse
|
7
|
Bong D, Sohn J, Lee SJV. Brief guide to RT-qPCR. Mol Cells 2024; 47:100141. [PMID: 39476972 PMCID: PMC11612376 DOI: 10.1016/j.mocell.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
RNA quantification is crucial for understanding gene expression and regulation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a widely used technique for RNA quantification because of its practical and quantitative nature, sensitivity, and specificity. Here, we provide an overview of RT-qPCR, focusing on essential reagents, the importance of primer design, the detailed workflow, and data analysis methods. This guide will be useful for scientists who are unfamiliar with RT-qPCR, highlighting key considerations for successful RNA quantification.
Collapse
Affiliation(s)
- Dajeong Bong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| |
Collapse
|
8
|
Martínez Del Río J, Frutos-Beltrán E, Sebastián-Martín A, Lasala F, Yasukawa K, Delgado R, Menéndez-Arias L. HIV-1 Reverse Transcriptase Error Rates and Transcriptional Thresholds Based on Single-strand Consensus Sequencing of Target RNA Derived From In Vitro-transcription and HIV-infected Cells. J Mol Biol 2024; 436:168815. [PMID: 39384034 DOI: 10.1016/j.jmb.2024.168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Nucleotide incorporation and lacZ-based forward mutation assays have been widely used to determine the accuracy of reverse transcriptases (RTs) in RNA-dependent DNA polymerization reactions. However, they involve quite complex and laborious procedures, and cannot provide accurate error rates. Recently, NGS-based methods using barcodes opened the possibility of detecting all errors introduced by the RT, although their widespread use is limited by cost, due to the large size of libraries to be sequenced. In this study, we describe a novel and relatively simple NGS assay based on single-strand consensus sequencing that provides robust results with a relatively small number of raw sequences (around 60 Mb). The method has been validated by determining the error rate of HIV-1 (BH10 strain) RT using the HIV-1 protease-coding sequence as target. HIV-1 reverse transcription error rates in standard conditions (37 °C/3 mM Mg2+) using an in vitro-transcribed RNA were around 7.3 × 10-5. In agreement with previous reports, an 8-fold increase in RT's accuracy was observed after reducing Mg2+ concentration to 0.5 mM. The fidelity of HIV-1 RT was also higher at 50 °C than at 37 °C (error rate 1.5 × 10-5). Interestingly, error rates obtained with HIV-1 RNA from infected cells as template of the reverse transcription at 3 mM Mg2+ (7.4 × 10-5) were similar to those determined with the in vitro-transcribed RNA, and were reduced to 1.8 × 10-5 in the presence of 0.5 mM Mg2+. Values obtained at low magnesium concentrations were modestly higher than the transcription error rates calculated for human cells, thereby suggesting a realistic transcriptional threshold for our NGS-based error rate determinations.
Collapse
Affiliation(s)
- Javier Martínez Del Río
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Alba Sebastián-Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Fátima Lasala
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (lmas12), Madrid 28041, Spain
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rafael Delgado
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (lmas12), Madrid 28041, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain.
| |
Collapse
|
9
|
Pichon M, Hollenstein M. Controlled enzymatic synthesis of oligonucleotides. Commun Chem 2024; 7:138. [PMID: 38890393 PMCID: PMC11189433 DOI: 10.1038/s42004-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Oligonucleotides are advancing as essential materials for the development of new therapeutics, artificial genes, or in storage of information applications. Hitherto, our capacity to write (i.e., synthesize) oligonucleotides is not as efficient as that to read (i.e., sequencing) DNA/RNA. Alternative, biocatalytic methods for the de novo synthesis of natural or modified oligonucleotides are in dire need to circumvent the limitations of traditional synthetic approaches. This Perspective article summarizes recent progress made in controlled enzymatic synthesis, where temporary blocked nucleotides are incorporated into immobilized primers by polymerases. While robust protocols have been established for DNA, RNA or XNA synthesis is more challenging. Nevertheless, using a suitable combination of protected nucleotides and polymerase has shown promises to produce RNA oligonucleotides even though the production of long DNA/RNA/XNA sequences (>1000 nt) remains challenging. We surmise that merging ligase- and polymerase-based synthesis would help to circumvent the current shortcomings of controlled enzymatic synthesis.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|