1
|
Paryente S, Aledwan H, Saady A. Cyclodextrin-based rotaxanes as a versatile platform for biological and medicinal applications. Commun Chem 2025; 8:149. [PMID: 40360722 PMCID: PMC12075808 DOI: 10.1038/s42004-025-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes attract significant interest due to their unique structures and dynamic properties. Cyclodextrin-based rotaxanes (CD-rotaxanes) have emerged as promising supramolecular systems for biological and medicinal applications. Their host-guest interactions and mechanical bonds provide enhanced stability, stimuli-responsiveness, and tunable functionality. This review highlights their roles in targeted therapy, controlling drug release, theranostic agents, enzyme inhibitor, gene transport and bioimaging. Challenges and future perspectives in translating CD-rotaxanes to biomedical applications are discussed, emphasizing their potential as a next-generation therapeutic platform.
Collapse
Affiliation(s)
- Sapir Paryente
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Hajar Aledwan
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Abed Saady
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
2
|
Gulyak EL, Brylev VA, Zhitlov MY, Komarova OA, Ustinov AV, Sapozhnikova KA, Alferova VA, Korshun VA, Gvozdev DA. Indocarbocyanine-Indodicarbocyanine (sCy3-sCy5) Absorptive Interactions in Conjugates and DNA Duplexes. Molecules 2024; 30:57. [PMID: 39795114 PMCID: PMC11721635 DOI: 10.3390/molecules30010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Sulfonated indocyanines 3 and 5 (sCy3, sCy5) are widely used to label biomolecules. Their high molar absorption coefficients and lack of spectral overlap with biopolymers make them ideal as linker components for rapid assessment of bioconjugate stoichiometry. We recently found that the determination of the sCy3:sCy5 molar ratio in a conjugate from its optical absorption spectrum is not straightforward, as the sCy3:sCy5 absorbance ratio at the maxima tends to be larger than expected. In this work, we have investigated this phenomenon in detail by studying the spectral properties of a series of sCy3-sCy5 conjugates in which the dyes are separated by linkers of various lengths, including DNA duplexes. It was found that when sCy3 and sCy5 are located in close proximity, they consistently exhibit an "abnormal" absorbance ratio. However, when the two dyes are separated by long rigid DNA-based spacers, the absorbance ratio becomes consistent with their individual molar absorption coefficients. This phenomenon should be taken into account when assessing the molar ratio of the dyes by UV-Vis spectroscopy.
Collapse
Affiliation(s)
- Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Vladimir A. Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Olga A. Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Ksenia A. Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Daniil A. Gvozdev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia
| |
Collapse
|
3
|
Gaspar N, Handula M, Stroet MCM, Marella-Panth K, Haeck J, Kirkland TA, Hall MP, Encell LP, Dalm S, Lowik C, Seimbille Y, Mezzanotte L. A Novel Luciferase-Based Reporter Gene Technology for Simultaneous Optical and Radionuclide Imaging of Cells. Int J Mol Sci 2024; 25:8206. [PMID: 39125775 PMCID: PMC11312113 DOI: 10.3390/ijms25158206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Multimodality reporter gene imaging combines the sensitivity, resolution and translational potential of two or more signals. The approach has not been widely adopted by the animal imaging community, mainly because its utility in this area is unproven. We developed a new complementation-based reporter gene system where the large component of split NanoLuc luciferase (LgBiT) presented on the surface of cells (TM-LgBiT) interacts with a radiotracer consisting of the high-affinity complementary HiBiT peptide labeled with a radionuclide. Radiotracer uptake could be imaged in mice using SPECT/CT and bioluminescence within two hours of implanting reporter-gene-expressing cells. Imaging data were validated by ex vivo biodistribution studies. Following the demonstration of complementation between the TM-LgBiT protein and HiBiT radiotracer, we validated the use of the technology in the highly specific in vivo multimodal imaging of cells. These findings highlight the potential of this new approach to facilitate the advancement of cell and gene therapies from bench to clinic.
Collapse
Affiliation(s)
- Natasa Gaspar
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Maryana Handula
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Marcus C. M. Stroet
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Kranthi Marella-Panth
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Joost Haeck
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | | | | | | | - Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Clemens Lowik
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
4
|
Oz S, Saar G, Olszakier S, Heinrich R, Kompanets MO, Berlin S. Revealing the MRI-Contrast in Optically Cleared Brains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400316. [PMID: 38647385 PMCID: PMC11165557 DOI: 10.1002/advs.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The current consensus holds that optically-cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue-clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI-contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast. Furthermore, it remains unknown whether non-delipidating clearing methods can produce MRI-compatible specimens or whether MRI-contrast can be re-established. These limitations hinder the development of multimodal MRI-light-microscopy (LM) imaging approaches. This study assesses the relation between MRI-contrast, and delipidation in optically-cleared whole brains following different tissue-clearing approaches. It is demonstrated that uDISCO and ECi-brains are MRI-compatible upon tissue rehydration, despite both methods' substantial delipidating-nature. It is also demonstrated that, whereas Scale-clearing preserves most lipids, Scale-cleared brain lack MRI-contrast. Furthermore, MRI-contrast is restored to lipid-free CLARITY-brains without introducing lipids. Our results thereby dissociate between the essentiality of lipids to MRI-contrast. A tight association is found between tissue expansion, hyperhydration and loss of MRI-contrast. These findings then enabled us to develop a multimodal MRI-LM-imaging approach, opening new avenues to bridge between the micro- and mesoscale for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Shimrit Oz
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Galit Saar
- Biomedical Core FacilityFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Shunit Olszakier
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Ronit Heinrich
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Mykhail O. Kompanets
- L.M. Litvinenko Institute of Physico‐Organic Chemistry and Coal ChemistryNational Academy of Sciences of UkraineKyivUkraine
| | - Shai Berlin
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| |
Collapse
|
5
|
Andreyanov M, Heinrich R, Berlin S. Design of Ultrapotent Genetically Encoded Inhibitors of Kv4.2 for Gating Neural Plasticity. J Neurosci 2024; 44:e2295222023. [PMID: 38154956 PMCID: PMC10869153 DOI: 10.1523/jneurosci.2295-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
The Kv4.2 potassium channel plays established roles in neuronal excitability, while also being implicated in plasticity. Current means to study the roles of Kv4.2 are limited, motivating us to design a genetically encoded membrane tethered Heteropodatoxin-2 (MetaPoda). We find that MetaPoda is an ultrapotent and selective gating-modifier of Kv4.2. We narrow its site of contact with the channel to two adjacent residues within the voltage sensitive domain (VSD) and, with docking simulations, suggest that the toxin binds the VSD from within the membrane. We also show that MetaPoda does not require an external linker of the channel for its activity. In neurons (obtained from female and male rat neonates), MetaPoda specifically, and potently, inhibits all Kv4 currents, leaving all other A-type currents unaffected. Inhibition of Kv4 in hippocampal neurons does not promote excessive excitability, as is expected from a simple potassium channel blocker. We do find that MetaPoda's prolonged expression (1 week) increases expression levels of the immediate early gene cFos and prevents potentiation. These findings argue for a major role of Kv4.2 in facilitating plasticity of hippocampal neurons. Lastly, we show that our engineering strategy is suitable for the swift engineering of another potent Kv4.2-selective membrane-tethered toxin, Phrixotoxin-1, denoted MetaPhix. Together, we provide two uniquely potent genetic tools to study Kv4.2 in neuronal excitability and plasticity.
Collapse
Affiliation(s)
- Michael Andreyanov
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|