1
|
Uddin MJ, Julin K, Overkleeft HS, Johannessen M, Lentz CS. Activity-Based Protein Profiling Identifies an α-Amylase Family Protein Contributing to the Virulence of Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2025; 11:573-583. [PMID: 39916318 PMCID: PMC11915364 DOI: 10.1021/acsinfecdis.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
In search of new putative antimicrobial drug targets in methicillin-resistant Staphylococcus aureus, we aimed to identify and characterize retaining glycosidase activities in this bacterial pathogen. Using activity-based protein profiling (ABPP), a panel of 7 fluorescent probes was screened to detect activities of diverse retaining glycosidase families. Based on this, a cocktail of 3 biotinylated probes (targeting α-glucosidases, β-galactosidases and α-fucosidases) was used for target enrichment and three glycoside hydrolase family proteins were identified by mass-spectrometry: 6-phospho-β-glucosidase (BglA), α-amylase family protein trehalase C (TreC), and autolysin (Atl). The physiological relevance of previously uncharacterized BglA and TreC was addressed in CRISPRi and inhibitor studies with the putative TreC inhibitor α-cyclophellitol-aziridine. Silencing of treC did not affect bacterial growth in rich media, but reduced biofilm formation in vitro, and attenuated virulence during Galleria mellonella infection, warranting future investigations into the biochemical function of this enzyme.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Kjersti Julin
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mona Johannessen
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Christian S. Lentz
- Centre
for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe
Interactions, Department of Medical Biology (IMB), UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
2
|
Lyu W, Zhang Y, Zhang Z, Lu H. Carmofur Exhibits Antimicrobial Activity Against Streptococcus pneumoniae. Antibiotics (Basel) 2025; 14:231. [PMID: 40149043 PMCID: PMC11939412 DOI: 10.3390/antibiotics14030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Streptococcus pneumoniae (S. pneumoniae) is a major pathogen causing severe infectious diseases, with an escalating issue of antimicrobial resistance that threatens the efficacy of existing antibiotics. Given the challenges in developing traditional antibiotics, drug repurposing strategies offer a novel approach to address the resistance crisis. This study aims to evaluate the antibacterial and anti-biofilm activities of the approved non-antibiotic anticancer drug carmofur against multidrug-resistant S. pneumoniae, and investigate the mechanism of action, and assess therapeutic potential in vivo. Methods/Results: Antimicrobial tests revealed that carmofur exhibited strong antibacterial activity against multidrug-resistant S. pneumoniae strains, with minimum inhibitory concentrations (MICs) ranging from 0.25 to 1 µg/mL. In the biofilm detection experiments, carmofur not only inhibited the formation of biofilms, but also effectively removed biofilms under high concentration conditions. Mechanistic studies showed that carmofur disrupted bacterial membrane permeability and decreased intracellular ATP levels. Molecular docking and dynamics simulation assays indicated that carmofur could stably bind to thymidylate synthase through hydrogen bonding and hydrophobic interactions, thereby exerting antibacterial effects. Meanwhile, carmofur was able to repress the expression of the thyA gene at the mRNA level. In a mouse infection model, the carmofur treatment group showed a reduction of approximately two log levels in bacterial load in lung tissue and blood, a significant decrease in the levels of inflammatory cytokines TNF-α and IL-6, and an improvement in survival rate to 60%. Conclusions: In summary, carmofur demonstrated significant antibacterial and anti-biofilm activities against multidrug-resistant S. pneumoniae and showed good anti-infective effects in vivo, suggesting its potential clinical application as a therapeutic agent against drug-resistant bacteria.
Collapse
Affiliation(s)
- Wenting Lyu
- College of Pharmacy, Heze University, Heze 274000, China; (W.L.); (Y.Z.)
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Australia
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China;
| | - Yuqing Zhang
- College of Pharmacy, Heze University, Heze 274000, China; (W.L.); (Y.Z.)
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Australia
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China;
| | - Zhen Zhang
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China;
| | - Hao Lu
- College of Pharmacy, Heze University, Heze 274000, China; (W.L.); (Y.Z.)
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China;
| |
Collapse
|
3
|
Grunnvåg JS, Hegstad K, Lentz CS. Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae015. [PMID: 38813097 PMCID: PMC11134295 DOI: 10.1093/femsmc/xtae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is a gut commensal bacterium which is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition-dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, and amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.
Collapse
Affiliation(s)
- Jeanette S Grunnvåg
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, P.O. Box 56, 9038 Tromsø, Norway
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
4
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of Staphylococcus aureus Infections. J Am Chem Soc 2024; 146:6880-6892. [PMID: 38411555 DOI: 10.1021/jacs.3c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen that is responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here, we describe the development of oxadiazolone-based activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologues in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling, and mouse models of infection, we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes and validate FphE as a target for the development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ki Wan Park
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Nichole J Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
5
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of S. aureus Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571116. [PMID: 38168396 PMCID: PMC10760020 DOI: 10.1101/2023.12.11.571116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here we describe the development of oxadiazolonebased activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologs in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling and mouse models of infection we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes (ABPs) and validate FphE as a target for development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emily C. Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ki Wan Park
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nichole J. Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulio A. Valdez
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|