1
|
Yang X, Chen X, Xia C, Li S, Zhu L, Xu C. Comparative analysis of the expression profiles of genes related to the Gadd45α signaling pathway in four kinds of liver diseases. Histol Histopathol 2020; 35:949-960. [PMID: 32298459 DOI: 10.14670/hh-18-218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gadd45α (growth arrest and DNA damage inducible alpha) is a member of a group of genes whose transcript levels are increased following stressful conditions that lead to growth arrest and treatment with agents that lead to DNA damage. Gadd45α is upregulated in liver cirrhosis (LC), hepatic cancer (HC), acute liver failure (AHF) and non-alcoholic fatty liver disease(NAFLD). Here, we investigated the essential differences in the Gadd45α signaling pathway in these diseases at the transcriptional level. The results showed that 44, 46, 71 and 27 genes significant changes in these diseases, and the H-cluster showed that the expression of the Gadd45α signaling-related genes was significantly different in the four liver diseases. DAVID functional analysis showed that the Gadd45α signaling pathway-related genes were mainly involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory responses, etc. Ingenuity pathway analysis (IPA) software was used to predict the functions of the Gadd45α signaling-related genes, and the results indicated that there were significant changes in cell differentiation, DNA damage repair, autophagy, apoptosis and necrosis. Gadd45α signaling pathway is involved in four kinds of liver disease and regulates a variety of activities via P38 MAPK, NF-κB, mTOR/STAT3, P21, PCNA, PI3K/Akt and other signaling pathways. Modulation of Gadd45α may be exploited to prevent the progression of liver disease, and to identify specific treatments for different stages of liver disease. In summary, the Gadd45α signaling pathway is involved in four kinds of liver disease and regulates a variety of physiological activities through various signaling pathways.
Collapse
Affiliation(s)
- Xianguang Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China
| | - Xuelin Chen
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Cong Xia
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Shuaihong Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Lin Zhu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Di Mauro S, Scamporrino A, Petta S, Urbano F, Filippello A, Ragusa M, Di Martino MT, Scionti F, Grimaudo S, Pipitone RM, Privitera G, Di Pino A, Scicali R, Valenti L, Dongiovanni P, Fracanzani A, Rabuazzo AM, Craxì A, Purrello M, Purrello F, Piro S. Serum coding and non-coding RNAs as biomarkers of NAFLD and fibrosis severity. Liver Int 2019; 39:1742-1754. [PMID: 31169972 PMCID: PMC6771597 DOI: 10.1111/liv.14167] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS In patients with non-alcoholic fatty liver disease (NAFLD), liver biopsy is the gold standard to detect non-alcoholic steatohepatitis (NASH) and stage liver fibrosis. We aimed to identify differentially expressed mRNAs and non-coding RNAs in serum samples of biopsy-diagnosed mild and severe NAFLD patients with respect to controls and to each other. METHODS We first performed a whole transcriptome analysis through microarray (n = 12: four Control: CTRL; four mild NAFLD: NAS ≤ 4 F0; four severe NAFLD NAS ≥ 5 F3), followed by validation of selected transcripts through real-time PCRs in an independent internal cohort of 88 subjects (63 NAFLD, 25 CTRL) and in an external cohort of 50 NAFLD patients. A similar analysis was also performed on liver biopsies and HepG2 cells exposed to oleate:palmitate or only palmitate (cellular model of NAFL/NASH) at intracellular/extracellular levels. Transcript correlation with histological/clinical data was also analysed. RESULTS We identified several differentially expressed coding/non-coding RNAs in each group of the study cohort. We validated the up-regulation of UBE2V1, BNIP3L mRNAs, RP11-128N14.5 lncRNA, TGFB2/TGFB2-OT1 coding/lncRNA in patients with NAS ≥ 5 (vs NAS ≤ 4) and the up-regulation of HBA2 mRNA, TGFB2/TGFB2-OT1 coding/lncRNA in patients with Fibrosis stages = 3-4 (vs F = 0-2). In in vitro models: UBE2V1, RP11-128N14.5 and TGFB2/TGFB2-OT1 had an increasing expression trend ranging from CTRL to oleate:palmitate or only palmitate-treated cells both at intracellular and extracellular level, while BNIP3L was up-regulated only at extracellular level. UBE2V1, RP11-128N14.5, TGFB2/TGFB2-OT1 and HBA2 up-regulation was also observed at histological level. UBE2V1, RP11-128N14.5, BNIP3L and TGFB2/TGFB2-OT1 correlated with histological/biochemical data. Combinations of TGFB2/TGFB2-OT1 + Fibrosis Index based on the four factors (FIB-4) showed an Area Under the Curve (AUC) of 0.891 (P = 3.00E-06) or TGFB2/TGFB2-OT1 + Fibroscan (AUC = 0.892, P = 2.00E-06) improved the detection of F = 3-4 with respect to F = 0-2 fibrosis stages. CONCLUSIONS We identified specific serum coding/non-coding RNA profiles in severe and mild NAFLD patients that possibly mirror the molecular mechanisms underlying NAFLD progression towards NASH/fibrosis. TGFB2/TGFB2-OT1 detection improves FIB-4/Fibroscan diagnostic performance for advanced fibrosis discrimination.
Collapse
Affiliation(s)
- Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Salvatore Petta
- Section of Gastroenterology, Di.Bi.M.I.SUniversity of PalermoPalermoItaly
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Marco Ragusa
- Department of BioMedical Sciences and BioTechnologySection of Biology and Genetics Giovanni Sichel, Unit of Molecular, Genome and Complex Systems BioMedicineCataniaItaly,Oasi Research Institute - IRCCSTroina94018Italy
| | - Maria T. Di Martino
- Department of Experimental and Clinical MedicineMagna Graecia UniversityCatanzaroItaly
| | - Francesca Scionti
- Department of Experimental and Clinical MedicineMagna Graecia UniversityCatanzaroItaly
| | - Stefania Grimaudo
- Section of Gastroenterology, Di.Bi.M.I.SUniversity of PalermoPalermoItaly
| | | | - Graziella Privitera
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Luca Valenti
- Translational MedicineUniversity of Milan, Fondazione IRCCS Ca' Granda Pad MarangoniMilanItaly
| | - Paola Dongiovanni
- Department of Pathophysiology and Transplantation, Section of Internal MedicineUniversity of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore PoliclinicoMilanItaly
| | - Anna Fracanzani
- Department of Pathophysiology and Transplantation, Section of Internal MedicineUniversity of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore PoliclinicoMilanItaly
| | - Agata M. Rabuazzo
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Antonio Craxì
- Section of Gastroenterology, Di.Bi.M.I.SUniversity of PalermoPalermoItaly
| | - Michele Purrello
- Department of BioMedical Sciences and BioTechnologySection of Biology and Genetics Giovanni Sichel, Unit of Molecular, Genome and Complex Systems BioMedicineCataniaItaly
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| |
Collapse
|
3
|
Teufel A, Itzel T, Erhart W, Brosch M, Wang XY, Kim YO, von Schönfels W, Herrmann A, Brückner S, Stickel F, Dufour JF, Chavakis T, Hellerbrand C, Spang R, Maass T, Becker T, Schreiber S, Schafmayer C, Schuppan D, Hampe J. Comparison of Gene Expression Patterns Between Mouse Models of Nonalcoholic Fatty Liver Disease and Liver Tissues From Patients. Gastroenterology 2016; 151:513-525.e0. [PMID: 27318147 DOI: 10.1053/j.gastro.2016.05.051] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Mouse models of NAFLD have been used in studies of pathogenesis and treatment, and have certain features of the human disease. We performed a systematic transcriptome-wide analysis of liver tissues from patients at different stages of NAFLD progression (ranging from healthy obese individuals to those with steatosis), as well as rodent models of NAFLD, to identify those that most closely resemble human disease progression in terms of gene expression patterns. METHODS We performed a systematic evaluation of genome-wide messenger RNA expression using liver tissues collected from mice fed a standard chow diet (controls) and 9 mouse models of NAFLD: mice on a high-fat diet (with or without fructose), mice on a Western-type diet, mice on a methionine- and choline-deficient diet, mice on a high-fat diet given streptozotocin, and mice with disruption of Pten in hepatocytes. We compared gene expression patterns with those of liver tissues from 25 patients with nonalcoholic steatohepatitis (NASH), 27 patients with NAFLD, 15 healthy obese individuals, and 39 healthy nonobese individuals (controls). Liver samples were obtained from patients undergoing liver biopsy for suspected NAFLD or NASH, or during liver or bariatric surgeries. Data sets were analyzed using the limma R-package. Overlap of functional profiles was analyzed by gene set enrichment analysis profiles. RESULTS We found differences between human and mouse transcriptomes to be significantly larger than differences between disease stages or models. Of the 65 genes with significantly altered expression in patients with NASH and 177 genes with significantly altered expression in patients with NAFLD, compared with controls, only 1-18 of these genes also differed significantly in expression between mouse models of NAFLD and control mice. However, expression of genes that regulate pathways associated with the development of NAFLD were altered in some mouse models (such as pathways associated with lipid metabolism). On a pathway level, gene expression patterns in livers of mice on the high-fat diet were associated more closely with human fatty liver disease than other models. CONCLUSIONS In comparing gene expression profiles between liver tissues from different mouse models of NAFLD and patients with different stages of NAFLD, we found very little overlap. Our data set is available for studies of pathways that contribute to the development of NASH and NAFLD and selection of the most applicable mouse models (http://www.nash-profiler.com).
Collapse
Affiliation(s)
- Andreas Teufel
- Department of Medicine I, University Hospital, Regensburg, Germany.
| | - Timo Itzel
- Department of Medicine I, University Hospital, Regensburg, Germany
| | - Wiebke Erhart
- Department of Internal Medicine I, University Hospital, Kiel, Germany
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Xiao Yu Wang
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany
| | | | | | - Stefan Brückner
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Felix Stickel
- Department of Clinical Research, Division of Hepatology, University of Berne, Berne, Switzerland
| | - Jean-François Dufour
- Department of Clinical Research, Division of Hepatology, University of Berne, Berne, Switzerland
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technical University Dresden, Dresden, Germany
| | | | - Rainer Spang
- Statistical Bioinfomatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Thorsten Maass
- Department of Medicine I, University Hospital, Regensburg, Germany
| | - Thomas Becker
- Department of Visceral and Thoracic Surgery, University Hospital, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital, Kiel, Germany
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, University Hospital, Kiel, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
4
|
Abstract
This paper aims to review the progress and problems in research of liver regeneration regulation in recent years and to explore the solutions to these problems by performing a systematic literature review combined with the author's work. In recent years, great progress has been made in preventing and treating liver diseases by regulating liver regeneration, for example, the coordination of promotion and inhibition, the reverse inhibition and positive induction, slight adjustment and preconditioning, and overall dynamic control. Current key scientific problems in this field include distinguishing between abnormal and normal liver regeneration, mechanisms underlying their mutual transformation, objective criteria for clinical application, and quantitative indicators for judging the efficacy. The regulation of liver regeneration for preventing and treating liver diseases has become a hot research topic, and the clinical translation and application of studies remain to be promoted on the basis of further in-depth research.
Collapse
|