1
|
Wang X, Hu W, Zhang J. Advances in pathophysiology and assessment methods of chronic obstructive pulmonary disease with frailty. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2025; 3:22-28. [PMID: 40226603 PMCID: PMC11993078 DOI: 10.1016/j.pccm.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Indexed: 04/15/2025]
Abstract
Frailty, a multidimensional syndrome characterized by decreased physiological reserves and vulnerability to stressors, presents significant challenges in the management of chronic obstructive pulmonary disease (COPD). COPD and frailty share common risk factors and pathophysiological pathways, such as muscle wasting, chronic inflammation, and malnutrition. Both COPD and frailty lead to a significant reduction in patients' physical functionality and quality of life. Consequently, early screening for frailty and proactive interventions for patients with COPD are increasingly considered essential. There are several methods for screening and assessing frailty in patients with COPD, such as the Fried Frailty Phenotype and the Frailty Index, each with its own advantages and limitations. However, there is currently no unified standard, nor a method specifically tailored to the Chinese population. The treatment of patients with COPD and concurrent frailty currently favors exercise interventions, nutritional interventions, or a combination of both. Further treatment approaches, including pharmacological interventions, are still being explored. Therefore, the development of frailty screening and assessment tools tailored to the Chinese population, along with the exploration of reasonable and effective new intervention measures, represents a crucial direction in China's efforts to prevent and treat frailty.
Collapse
Affiliation(s)
- Xia Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Alhajj N, Yahya MFZR, O'Reilly NJ, Cathcart H. Development and characterization of a spray-dried inhalable ternary combination for the treatment of Pseudomonas aeruginosa biofilm infection in cystic fibrosis. Eur J Pharm Sci 2024; 192:106654. [PMID: 38013123 DOI: 10.1016/j.ejps.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Cystic fibrosis (CF) is an inherited lung disease characterised by the accumulation of thick layers of dried mucus in the lungs which serve as a nidus for chronic infection. Pseudomonas aeruginosa is the predominant cause of chronic lung infection in cystic fibrosis. The dense mucus coupled with biofilm formation hinder antibiotic penetration and prevent them from reaching their target. Mucoactive agents are recommended in the treatment of CF in combination with antibiotics. In spite of the extensive research in developing novel drug combinations for the treatment of lung infection in CF, to our knowledge, there is no study that combines antibiotic, antibiofilm and mucoactive agent in a single inhaled dry powder formulation. In the present study, we investigate the possibility of adding a mucoactive agent to our previously developed ciprofloxacinquercetin (antibiotic-antibiofilm) dry powder for inhalation. Three mucoactive agents, namely mannitol (MAN), N-acetyl-L-cysteine (NAC) and ambroxol hydrochloride (AMB), were investigated for this purpose. The ternary combinations were prepared via spray drying without the addition of excipients. All ternary combinations conserved or improved the antibacterial and biofilm inhibition activities of ciprofloxacin against P. aeruginosa (ATCC 10145). The addition of AMB resulted in an amorphous ternary combination (SD-CQA) with superior physical stability as indicated by DSC and nonambient XRPD. Furthermore, SD-CQA displayed better in vitro aerosolization performance (ED ∼ 71 %; FPF ∼ 49 %) compared to formulations containing MAN and NAC (ED ∼ 64 % and 44 %; FPF ∼ 44 % and 29 %, respectively). In conclusion, a ternary drug combination powder with suitable aerosolization, physical stability and antibacterial/antibiofilm properties was prepared by a single spray drying step.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland.
| | | | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland
| |
Collapse
|
3
|
Nakahari T, Suzuki C, Kawaguchi K, Hosogi S, Tanaka S, Asano S, Inui T, Marunaka Y. Ambroxol-Enhanced Frequency and Amplitude of Beating Cilia Controlled by a Voltage-Gated Ca 2+ Channel, Cav1.2, via pH i Increase and [Cl -] i Decrease in the Lung Airway Epithelial Cells of Mice. Int J Mol Sci 2023; 24:16976. [PMID: 38069298 PMCID: PMC10707002 DOI: 10.3390/ijms242316976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Ambroxol (ABX), a frequently prescribed secretolytic agent which enhances the ciliary beat frequency (CBF) and ciliary bend angle (CBA, an index of amplitude) by 30%, activates a voltage-dependent Ca2+ channel (CaV1.2) and a small transient Ca2+ release in the ciliated lung airway epithelial cells (c-LAECs) of mice. The activation of CaV1.2 alone enhanced the CBF and CBA by 20%, mediated by a pHi increasei and a [Cl-]i decrease in the c-LAECs. The increase in pHi, which was induced by the activation of the Na+-HCO3- cotransporter (NBC), enhanced the CBF (by 30%) and CBA (by 15-20%), and a decrease in [Cl-]i, which was induced by the Cl- release via anoctamine 1 (ANO1), enhanced the CBA (by 10-15%). While a Ca2+-free solution or nifedipine (an inhibitor of CaV1.2) inhibited 70% of the CBF and CBA enhancement using ABX, CaV1.2 enhanced most of the CBF and CBA increases using ABX. The activation of the CaV1.2 existing in the cilia stimulates the NBC to increase pHi and ANO1 to decrease the [Cl-]i in the c-LAECs. In conclusion, the pHi increase and the [Cl-]i decrease enhanced the CBF and CBA in the ABX-stimulated c-LAECs.
Collapse
Affiliation(s)
- Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| | - Chihiro Suzuki
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (C.S.); (S.T.)
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.K.); (S.A.)
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan;
| | - Saori Tanaka
- Laboratory of Pharmacotherapy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan; (C.S.); (S.T.)
| | - Shinji Asano
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.K.); (S.A.)
| | - Toshio Inui
- Saisei Mirai Clinics, Moriguchi 570-0012, Japan;
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| |
Collapse
|
4
|
Llinares J, Cantereau A, Froux L, Becq F. Quantitative phase imaging to study transmembrane water fluxes regulated by CFTR and AQP3 in living human airway epithelial CFBE cells and CHO cells. PLoS One 2020; 15:e0233439. [PMID: 32469934 PMCID: PMC7259668 DOI: 10.1371/journal.pone.0233439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
In epithelial cells, the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl- channel, plays a key role in water and electrolytes secretion. A dysfunctional CFTR leads to the dehydration of the external environment of the cells and to the production of viscous mucus in the airways of cystic fibrosis patients. Here, we applied the quadriwave lateral shearing interferometry (QWLSI), a quantitative phase imaging technique based on the measurement of the light wave shift when passing through a living sample, to study water transport regulation in human airway epithelial CFBE and CHO cells expressing wild-type, G551D- and F508del-CFTR. We were able to detect phase variations during osmotic challenges and confirmed that cellular volume changes reflecting water fluxes can be detected with QWLSI. Forskolin stimulation activated a phase increase in all CFBE and CHO cell types. This phase variation was due to cellular volume decrease and intracellular refractive index increase and was completely blocked by mercury, suggesting an activation of a cAMP-dependent water efflux mediated by an endogenous aquaporin (AQP). AQP3 mRNAs, not AQP1, AQP4 and AQP5 mRNAs, were detected by RT-PCR in CFBE cells. Readdressing the F508del-CFTR protein to the cell surface with VX-809 increased the detected water efflux in CHO but not in CFBE cells. However, VX-770, a potentiator of CFTR function, failed to further increase the water flux in either G551D-CFTR or VX-809-corrected F508del-CFTR expressing cells. Our results show that QWLSI could be a suitable technique to study water transport in living cells. We identified a CFTR and cAMP-dependent, mercury-sensitive water transport in airway epithelial and CHO cells that might be due to AQP3. This water transport appears to be affected when CFTR is mutated and independent of the chloride channel function of CFTR.
Collapse
Affiliation(s)
- Jodie Llinares
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Anne Cantereau
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Lionel Froux
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
5
|
Cataldi M, Sblendorio V, Leo A, Piazza O. Biofilm-dependent airway infections: a role for ambroxol? Pulm Pharmacol Ther 2013; 28:98-108. [PMID: 24252805 DOI: 10.1016/j.pupt.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/31/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
Abstract
Biofilms are a key factor in the development of both acute and chronic airway infections. Their relevance is well established in ventilator associated pneumonia, one of the most severe complications in critically ill patients, and in cystic fibrosis, the most common lethal genetic disease in Caucasians. Accumulating evidence suggests that biofilms could have also a role in chronic obstructive pulmonary disease and their involvement in bronchiectasis has been proposed as well. When they grow in biofilms, microorganisms become multidrug-resistant. Therefore the treatment of biofilm-dependent airway infections is problematic. Indeed, it still largely based on measures aiming to prevent the formation of biofilms or remove them once that they are formed. Here we review recent evidence suggesting that the mucokinetic drug ambroxol has specific anti-biofilm properties. We also discuss how additional pharmacological properties of this drug could be beneficial in biofilm-dependent airway infections. Specifically, we review the evidence showing that: 1-ambroxol exerts anti-inflammatory effects by inhibiting at multiple levels the activity of neutrophils, and 2-it improves mucociliary clearance by interfering with the activity of airway epithelium ion channels and transporters including sodium/bicarbonate and sodium/potassium/chloride cotransporters, cystic fibrosis transmembrane conductance regulator and aquaporins. As a whole, the data that we review here suggest that ambroxol could be helpful in biofilm-dependent airway infections. However, considering the limited clinical evidence available up to date, further clinical studies are required to support the use of ambroxol in these diseases.
Collapse
Affiliation(s)
- M Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Via Pansini 5, 80131 Napoli, Italy.
| | - V Sblendorio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Via Pansini 5, 80131 Napoli, Italy
| | - A Leo
- Department of Health Sciences, University Magna Græcia of Catanzaro, University Campus "Salvatore Venuta", Viale Europa, I-88100 Catanzaro, Italy
| | - O Piazza
- University of Salerno, Via Allende, 84081 Baronissi, Italy
| |
Collapse
|