1
|
Wang YT, Huang X, Cai XC, Kang XX, Zhu HL. Synthesis, biological evaluation and molecular docking of thiazole hydrazone derivatives grafted with indole as novel tubulin polymerization inhibitors. J Mol Struct 2024; 1301:137343. [DOI: 10.1016/j.molstruc.2023.137343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
|
2
|
Mu J, Zhang Z, Zhou F, Zheng J, Bo P, You B. Experimental study on co-culture of DiI-labeled rat bone marrow mesenchymal stem cells and neonatal rat cardiomyocytes to induce differentiation into cardiomyocyte-like cells. Biomed Mater Eng 2022:BME221429. [DOI: 10.3233/bme-221429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND: Myocardial infarction is a serious clinical disease with high mortality and poor prognosis. Cardiomyocytes (CMs) have limited regeneration abilities after ischemic injury. Their growth and differentiation can be enhanced by contact co-culture with stem cells. OBJECTIVE: The aim was to study the contact co-culture of Dil-labeled bone marrow mesenchymal stem cells (BMSCs) and CMs for inducing differentiation of CMs from stem cells for treating myocardial infarction. METHODS: After contact co-culture, the differentiation of BMSCs into CMs was analyzed qualitatively by detecting myocardial markers (cardiac troponin T and α-smooth muscle actin) using immunofluorescence and quantitatively using flow cytometry. To examine the mechanism, possible gap junctions between BMSCs and CMs were analyzed by detecting gap junction protein connexin 43 (C×43) expression in BMSCs using immunofluorescence. The functionality of gap junctions was analyzed using dye transfer experiments. RESULTS: The results revealed that BMSCs in contact with CMs exhibited myocardial markers and a significant increase in differentiation rate (P < 0.05); they also proved the existence and function of gap junctions between BMSCs and CMs. CONCLUSIONS: It was shown that contact co-culture can induce Dil-labeled BMSCs to differentiate into CM-like cells and examined the principle of gap junction-mediated signaling pathways involved in inducing stem cells to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Ping Bo
- , , Capital Medical University, , , China
| | - Bin You
- , , Capital Medical University, , , China
| |
Collapse
|
3
|
Zhang Z, Zhou F, Zhang J, Mu J, Bo P, You B. Preparation of myocardial patches from DiI-labeled rat bone marrow mesenchymal stem cells and neonatal rat cardiomyocytes contact co-cultured on polycaprolactone film. Biomed Mater 2022; 17. [PMID: 35551116 DOI: 10.1088/1748-605x/ac6f38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/12/2022] [Indexed: 11/11/2022]
Abstract
DiI-labeled BMSCs were contact co-cultured with CMs on PCL film to prepare myocardial patches. BMSCs were labeled with DiI dye. DiI-labeled BMSCs were co-cultured with CMs on PCL film in the experimental group, while CMs were replaced with the same amount of unlabeled BMSCs in the control group. After 24 h, cell growth was observed by light microscopy and cells were fixed for scanning electron microscopy. After 7 days of co-culture, cells were stained for immunofluorescence detection of myocardial markers cardiac troponin T (cTnT) and α-actin. Differentiation of BMSCs on PCL was observed by fluorescence microscopy. The efficiency of BMSC differentiation into CMs was analyzed by flow cytometry on the first and seventh days of co-culture. CMs were stained with calcein alone and contact co-cultured with DiI-labeled BMSCs on PCL film to observe intercellular dye transfer. Finally, cells were stained for immunofluorescence detection of connexin 43 (Cx43) expression and to observe the relationship between gap junctions and contact co-culture. After co-culture for 24 h, cells were observed to have attached to PCL by light microscopy. Upon appropriate excitation, DiI-labeled BMSCs exhibited red fluorescence, while unlabeled CMs did not. Scanning electron microscopy revealed a large number of cells on the PCL membrane and their cell state appeared normal. On the seventh day, some DiI-labeled BMSCs expressed cTnT and α-actin. Flow cytometry showed that the rate of stem cell differentiation in the experimental group was significantly higher than the control group on the seven day (20.12% > 3.49%, P < 0.05). From the second day of co-culture, immunofluorescence staining for Cx43 revealed green fluorescent puncta in some BMSCs; from the third day of co-culture, a portion of BMSCs exhibited green fluorescence in dye transfer tests. Contact co-culture of DiI-labeled BMSCs and CMs on PCL film successfully generated myocardial patches.
Collapse
Affiliation(s)
- Zichang Zhang
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China., Chaoyang-qu, Beijing, 100029, CHINA
| | - Fan Zhou
- The Third Medical Center of PLA General Hospital, Department of Ultrasound, The Third Medical Center of PLA General Hospital, Beijing 100039, China, beijing , 100039, CHINA
| | - Jianwei Zhang
- sunshine union hospital, Heart center of sunshine union hospital, Weifang 261205, China, weifang, 261205, CHINA
| | - Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China, beijing, 100029, CHINA
| | - Ping Bo
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, Chaoyang-qu, Beijing, 100029, CHINA
| | - Bin You
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China., Chaoyang-qu, Beijing, 100029, CHINA
| |
Collapse
|
4
|
Sun X, Gu X, Li H, Xu P, Li M, Zhu Y, Zuo Q, Li B. H3K9me2 regulates early transcription factors to promote mesenchymal stem‑cell differentiation into cardiomyocytes. Mol Med Rep 2021; 24:616. [PMID: 34184085 DOI: 10.3892/mmr.2021.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/24/2021] [Indexed: 11/05/2022] Open
Abstract
Studies have shown that histone H3 at lysine 9 (H3K9me2) is an important epigenetic modifier of embryonic development, cell reprogramming and cell differentiation, but its specific role in cardiomyocyte formation remains to be elucidated. The present study established a model of 5‑Azacytidine‑induced differentiation of rat bone mesenchymal stem cells (MSCs) into cardiomyocytes and, on this basis, investigated the dimethylation of H3K9me2 and its effect on cardiomyocyte formation by knockdown of H3K9me2 methylase, euchromatic histone‑lysine N‑methyltransferase 2 (G9a) and H3K9me2 lysine demethylase 3A (KDM3A). The results demonstrated that, in comparison with the normal induction process, the knockdown of G9a could significantly reduce the H3K9me2 level of the MSCs in the induced model. Reverse transcription‑quantitative (RT‑q) PCR demonstrated that the expression of cardiac troponin T(cTnT) was significantly increased. In addition, flow cytometry demonstrated that the proportion of cTnT‑positive cells was significantly increased on day 21. With the knockdown of KDM3A, the opposite occurred. In order to explore the specific way of H3K9me2 regulating cardiomyocyte formation, western blotting and RT‑qPCR were used to detect the expression of key transcription factors including GATA binding protein 4 (GATA‑4), NK2 Homeobox 5 (Nkx2.5) and myocyte enhancer factor 2c (MEF2c) during cardiomyocyte formation. The decrease of H3K9me2 increased the expression of transcription factors GATA‑4, Nkx2.5 and MEF2c in the early stage of myocardial development while the increase of H3K9me2 inhibited the expression of those transcription factors. Accordingly, it was concluded that H3K9me2 is a negative regulator of cardiomyocyte formation and can participate in cardiomyocyte formation by activating or inhibiting key transcription factors of cardiomyocytes, which will lay the foundation for the optimized induction efficiency of cardiomyocytes in in vitro and clinical applications.
Collapse
Affiliation(s)
- Xiaolin Sun
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiang Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Hongxiao Li
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Pei Xu
- Department of Hematology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Mengting Li
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ye Zhu
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
5
|
White SJ, Chong JJH. Mesenchymal Stem Cells in Cardiac Repair: Effects on Myocytes, Vasculature, and Fibroblasts. Clin Ther 2020; 42:1880-1891. [PMID: 32938532 DOI: 10.1016/j.clinthera.2020.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Cardiac pathologies remain a dominant cause of morbidity and mortality within the community. The drive to develop therapies capable of repairing damaged heart tissue to achieve clinically significant restoration of function has motivated the pursuit of novel approaches such as cell therapy. To this end, evidence of therapeutic benefits achieved by using mesenchymal stem cells (MSCs) has captured considerable interest despite a relative lack of information regarding the mechanisms involved. This narrative review synthesizes and interprets the current literature describing mechanisms by which MSCs can elicit cardiac repair, thereby directing attention to avenues of further inquiry. METHODS OVID versions of MEDLINE and EMBASE were searched for studies describing the role of MSCs in mammalian cardiac repair. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS MSCs elicit cardiac repair in a range of in vitro systems and animal models of diseases such as myocardial infarction and heart failure. Important mechanisms include the preservation of myocardial contractility, the promotion of angiogenesis, and the modulation of fibrosis. Exposing in vitro MSCs to a microenvironment reflective of that encountered in the injured heart seems to potentiate these therapeutic mechanisms. IMPLICATIONS Promising results in animal studies warrant continuation of clinical MSC cardiac therapy studies. Paracrine functions of MSCs seem to be the dominant mechanism of cardiac repair over direct cellular effects. Although integral, the MSC secretome remains poorly defined. In addition, most of the mechanistic data within the literature have been derived from animal MSC research, necessitating more human MSC-based work.
Collapse
Affiliation(s)
- Samuel J White
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
6
|
Wang YT, Shi TQ, Zhu HL, Liu CH. Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors. Bioorg Med Chem 2018; 27:502-515. [PMID: 30606674 DOI: 10.1016/j.bmc.2018.12.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022]
Abstract
Tubulin-targeting drugs have increasingly become the focus of anticancer drugs research. Twenty-five novel benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives were synthesized and evaluated for bioactivity as potential tubulin polymerization inhibitors. Among them, compound 30 showed the most excellent inhibition against tubulin assembly (IC50 = 1.52 μM) and in vitro growth inhibitory activity against a panel of four human cancer cell lines (IC50 = 0.15, 0.21, 0.33 and 0.17 μM, respectively for A549, Hela, HepG2 and MCF-7). It could also validly induce A549 cell apoptosis, cause cell cycle arrest in G2/M phase and disrupt the cellular microtubule network. These results, along with molecular docking data, provided an important basis for further optimization of compound 30 as a potential anticancer agent.
Collapse
Affiliation(s)
- Yan-Ting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China; Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Tian-Qi Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China.
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
7
|
Brychtova M, Thiele JA, Lysak D, Holubova M, Kralickova M, Vistejnova L. Mesenchymal stem cells as the near future of cardiology medicine - truth or wish? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:8-18. [PMID: 30439932 DOI: 10.5507/bp.2018.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cardiac damage is one of major cause of worldwide morbidity and mortality. Despite the development in pharmacotherapy, cardiosurgery and interventional cardiology, many patients remain at increased risk of developing adverse cardiac remodeling. An alternative treatment approach is the application of stem cells. Mesenchymal stem cells are among the most promising cell types usable for cardiac regeneration. Their homing to the damaged area, differentiation into cardiomyocytes, paracrine and/or immunomodulatory effect on cardiac tissue was investigated extensively. Despite promising preclinical reports, clinical trials on human patients are not convincing. Meta-analyses of these trials open many questions and show that routine clinical application of mesenchymal stem cells as a cardiac treatment may be not as helpful as expected. This review summarizes contemporary knowledge about mesenchymal stem cells role in cardiac tissue repair and discusses the problems and perspectives of this experimental therapeutical approach.
Collapse
Affiliation(s)
- Michaela Brychtova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jana-Aletta Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Daniel Lysak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Monika Holubova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
8
|
Chen K, Zhang YL, Fan J, Ma X, Qin YJ, Zhu HL. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation. Eur J Med Chem 2018; 156:722-737. [DOI: 10.1016/j.ejmech.2018.07.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
|
9
|
Joshi J, Mahajan G, Kothapalli CR. Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids. Biotechnol Bioeng 2018; 115:2013-2026. [PMID: 29665002 DOI: 10.1002/bit.26714] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Endogenous adult cardiac regenerative machinery is not capable of replacing the lost cells following myocardial infarction, often leading to permanent alterations in structure-function-mechanical properties. Regenerative therapies based on delivering autologous stem cells within an appropriate 3D milieu could meet such demand, by enabling homing and directed differentiation of the transplanted cells into lost specialized cell populations. Since type I collagen is the predominant cardiac tissue matrix protein, we here optimized the 3D niche which could promote time-dependent evolution of cardiomyogenesis from human bone marrow-derived mesenchymal stem cells (BM-MSC). 3D collagen gel physical and mechanical characteristics were assessed using SEM and AFM, respectively, while the standalone and combined effects of collagen concentration, culture duration, and 5-azacytidine (aza) dose on the phenotype and genotype of MSC spheroids were quantified using immunofluorescence labeling and RT-PCR analysis. Increasing collagen concentration led to a significant increase in Young's modulus (p < 0.01) but simultaneous decrease in the mean pore size, resulting in stiffer gels. Spheroid formation significantly modulated MSC differentiation and genotype, mostly due to better cell-cell interactions. Among the aza dosages tested, 10 μM appears to be optimal, while 3 mg/ml gels resulted in significantly lower cell viability compared to 1 or 2 mg/ml gels. Stiffer gels (2 and 3 mg/ml) and exposure to 10 μM aza upregulated early and late cardiac marker expressions in a time-dependent fashion. On the other hand, cell-cell signaling within the MSC spheroids seem to have a strong role in influencing mature cardiac markers expression, since neither aza nor gel stiffness seem to significantly improve their expression. Western blot analysis suggested that canonical Wnt/β-catenin signaling pathway might be primarily mediating the observed benefits of aza on cardiac differentiation of MSC spheroids. In conclusion, 2 mg/ml collagen and 10 μM aza appears to offer optimal 3D microenvironment in terms of cell viability and time-dependent evolution of cardiomyogenesis from human BM-MSCs, with significant applications in cardiac tissue engineering and stem cell transplantation for regenerating lost cardiac tissue.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | | |
Collapse
|
10
|
BMP-2 and icariin synergistically promote p38MAPK-mediated cardiomyocyte differentiation of mesenchymal stem cells via enhanced NOX4-driven ROS generation. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1954-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Szaraz P, Gratch YS, Iqbal F, Librach CL. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells. J Vis Exp 2017. [PMID: 28829419 DOI: 10.3791/55757] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved. Previous methods of differentiation were based on pharmacological agents or growth factors. However, more physiologically relevant strategies can also enable MSCs to undergo cardiomyogenic transformation. Here, we present a differentiation method using MSC aggregates on cardiomyocyte feeder layers to produce cardiomyocyte-like contracting cells. Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a greater differentiation potential than commonly investigated MSC types, such as bone marrow MSCs (BMSCs). As an ontogenetically younger source, we investigated the cardiomyogenic potential of first-trimester (FTM) HUCPVCs compared to older sources. FTM HUCPVCs are a novel, rich source of MSCs that retain their in utero immunoprivileged properties when cultured in vitro. Using this differentiation protocol, FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to BMSCs, as indicated by the increased expression of cardiomyocyte markers (i.e., myocyte enhancer factor 2C, cardiac troponin T, heavy chain cardiac myosin, signal regulatory protein α, and connexin 43). They also maintained significantly lower immunogenicity, as demonstrated by their lower HLA-A expression and higher HLA-G expression. Applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells clusters within 1 week of co-culture on cardiac feeder layers, becoming the first MSC type to do so. Our results demonstrate that this differentiation strategy can effectively harness the cardiomyogenic potential of young MSCs, such as FTM HUCPVCs, and suggests that in vitro pre-differentiation could be a potential strategy to increase their regenerative efficacy in vivo.
Collapse
Affiliation(s)
- Peter Szaraz
- Create Fertility Centre; Department of Physiology, University of Toronto;
| | | | - Farwah Iqbal
- Create Fertility Centre; Department of Physiology, University of Toronto
| | - Clifford L Librach
- Create Fertility Centre; Department of Physiology, University of Toronto; Department of Obstetrics and Gynecology, University of Toronto; Department of Physiology, University of Toronto; Department of Obstetrics and Gynecology, Women's College Hospital
| |
Collapse
|
12
|
Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering. Stem Cells Int 2017; 2017:3945403. [PMID: 28303152 PMCID: PMC5337882 DOI: 10.1155/2017/3945403] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs) are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.
Collapse
|
13
|
Shi C, Zhang H, Louie K, Mishina Y, Sun H. BMP Signaling Mediated by BMPR1A in Osteoclasts Negatively Regulates Osteoblast Mineralization Through Suppression of Cx43. J Cell Biochem 2016; 118:605-614. [PMID: 27649478 DOI: 10.1002/jcb.25746] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/19/2016] [Indexed: 12/23/2022]
Abstract
Osteoblasts and osteoclasts are well orchestrated through different mechanisms of communication during bone remodeling. Previously, we found that osteoclast-specific disruption of one of the BMP receptors, Bmpr1a, results in increased osteoblastic bone formation in mice. We hypothesized that BMPR1A signaling in osteoclasts regulates production of either membrane bound proteins or secreted molecules that regulated osteoblast differentiation. In our current study, we co-cultured wild-type osteoblasts with either control osteoclasts or osteoclasts lacking BMPR1A signaling activity. We found that loss of Bmpr1a in osteoclasts promoted osteoblast mineralization in vitro. Further, we found that the expression of Cx43/Gja1 in the mutant osteoclasts was increased, which encoded for one of the gap junction proteins connexin 43/gap junction alpha 1. Knockdown of Gja1 in the mutant osteoclasts for Bmpr1a reduced osteoblastic mineralization when co-cultured. Our findings suggest that GJA1 may be one of the downstream targets of BMPR1A signaling in osteoclasts that mediates osteoclast-osteoblast communication during bone remodeling. J. Cell. Biochem. 118: 605-614, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province, 130021, China.,Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, Ann Arbor, Michigan, 48109-1078
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, Ann Arbor, Michigan, 48109-1078
| | - Ke'ale Louie
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, Ann Arbor, Michigan, 48109-1078
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, Ann Arbor, Michigan, 48109-1078
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province, 130021, China
| |
Collapse
|
14
|
In Vitro Differentiation of First Trimester Human Umbilical Cord Perivascular Cells into Contracting Cardiomyocyte-Like Cells. Stem Cells Int 2016; 2016:7513252. [PMID: 27123009 PMCID: PMC4829731 DOI: 10.1155/2016/7513252] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/30/2016] [Accepted: 02/11/2016] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found. The aim of our study was to investigate the cardiomyogenic differentiation potential of first trimester human umbilical cord perivascular cells (FTM HUCPVCs), a novel, young source of immunoprivileged mesenchymal stromal cells. Based on the expression of cardiomyocyte markers (cTnT, MYH6, SIRPA, and CX43) FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to bone marrow MSCs, while their immunogenicity remained significantly lower as indicated by HLA-A and HLA-G expression and susceptibility to T cell mediated cytotoxicity. When applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells within 1 week of coculture, making them the first MSC type with this ability. Our results indicate that young FTM HUCPVCs have superior cardiomyogenic potential coupled with beneficial immunogenic properties when compared to MSCs of older tissue sources, suggesting that in vitro predifferentiation could be a potential strategy to increase their effectiveness in vivo.
Collapse
|
15
|
Ortega MT, Jeffery B, Riviere JE, Monteiro-Riviere NA. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells. J Appl Toxicol 2016; 36:189-98. [PMID: 25976427 DOI: 10.1002/jat.3158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 02/01/2023]
Abstract
We developed an in vitro method to assess pet food ingredients safety. Canine bone marrow-derived mesenchymal stem cells (BMSC) were differentiated into enterocyte-like cells (ELC) to assess toxicity in cells representing similar patterns of exposure in vivo. The toxicological profile of clove leave oil, eugenol, guanosine monophosphate (GMP), GMP + inosine monophosphate, sorbose, ginger root extract, cinnamon bark oil, cinnamaldehyde, thyme oil, thymol and citric acid was assessed in BMSC and ELC. The LC50 for GMP + inosine monophosphate was 59.42 ± 0.90 and 56.7 ± 3.5 mg ml(-1) for BMSC and ELC; 56.84 ± 0.95 and 53.66 ± 1.36 mg ml(-1) for GMP; 0.02 ± 0.001 and 1.25 ± 0.47 mg ml(-1) for citric acid; 0.077 ± 0.002 and 0.037 ± 0.01 mg ml(-1) for cinnamaldehyde; 0.002 ± 0.0001 and 0.002 ± 0.0008 mg ml(-1) for thymol; 0.080 ± 0.003 and 0.059 ± 0.001 mg ml(-1) for thyme oil; 0.111 ± 0.002 and 0.054 ± 0.01 mg ml(-1) for cinnamon bark oil; 0.119 ± 0.0004 and 0.099 ± 0.011 mg ml(-1) for clove leave oil; 0.04 ± 0.001 and 0.028 ± 0.002 mg ml(-1) for eugenol; 2.80 ± 0.11 and 1.75 ± 0.51 mg ml(-1) for ginger root extract; > 200 and 116.78 ± 7.35 mg ml(-1) for sorbose. Lemon grass oil was evaluated at 0.003-0.9 in BMSC and .03-0.9 mg ml(-1) in ELC and its mechanistic effect was investigated. The gene toxicology studies showed regulation of 61% genes in CYP450 pathway, 37% in cholestasis and 33% in immunotoxicity pathways for BMSC. For ELC, 80% for heat shock response, 69% for beta-oxidation and 65% for mitochondrial energy metabolism. In conclusion, these studies provide a baseline against which differential toxicity of dietary feed ingredients can be assessed in vitro for direct effects on canine cells and demonstrate differential toxicity in differentiated cells that represent gastrointestinal epithelial cells.
Collapse
Affiliation(s)
- M T Ortega
- College of Veterinary Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - B Jeffery
- Mars Global Food Safety Center, Yanqi Economic Development Zone, Huairou, Beijing, People's Republic of China
| | - J E Riviere
- College of Veterinary Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - N A Monteiro-Riviere
- College of Veterinary Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
16
|
Pham TLB, Nguyen TT, Van Bui A, Nguyen MT, Van Pham P. Fetal heart extract facilitates the differentiation of human umbilical cord blood-derived mesenchymal stem cells into heart muscle precursor cells. Cytotechnology 2014; 68:645-58. [PMID: 25377264 DOI: 10.1007/s10616-014-9812-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are a promising stem cell source with the potential to modulate the immune system as well as the capacity to differentiate into osteoblasts, chondrocytes, and adipocytes. In previous publications, UCB-MSCs have been successfully differentiated into cardiomyocytes. This study aimed to improve the efficacy of differentiation of UCB-MSCs into cardiomyocytes by combining 5-azacytidine (Aza) with mouse fetal heart extract (HE) in the induction medium. UCB-MSCs were isolated from umbilical cord blood according to a published protocol. Murine fetal hearts were used to produce fetal HE using a rapid freeze-thaw procedure. MSCs at the 3rd to 5th passage were differentiated into cardiomyocytes in two kinds of induction medium: complete culture medium plus Aza (Aza group) and complete culture medium plus Aza and fetal HE (Aza + HE group). The results showed that the cells in both kinds of induction medium exhibited the phenotype of cardiomyocytes. At the transcriptional level, the cells expressed a number of cardiac muscle-specific genes such as Nkx2.5, Gata 4, Mef2c, HCN2, hBNP, α-Ca, cTnT, Desmin, and β-MHC on day 27 in the Aza group and on day 18 in the Aza + HE group. At the translational level, sarcomic α-actin was expressed on day 27 in the Aza group and day 18 in the Aza + HE group. Although they expressed specific genes and proteins of cardiac muscle cells, the induced cells in both groups did not contract and beat spontaneously. These properties are similar to properties of heart muscle precursor cells in vivo. These results demonstrated that the fetal HE facilitates the differentiation process of human UCB-MSCs into heart muscle precursor cells.
Collapse
Affiliation(s)
- Truc Le-Buu Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tam Thanh Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Van Bui
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - My Thu Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
17
|
Abstract
Cell therapy as a replacement for diseased or destroyed endogenous cells is a major component of regenerative medicine. Various types of stem cells are or will be used in clinical settings as autologous or allogeneic products. In this chapter, the progress that has been made to translate basic stem cell research into pharmaceutical manufacturing processes will be reviewed. Even if in public perception, embryonic stem (ES) cells and more recently induced pluripotent stem (iPS) cells dominate the field of regenerative medicine and will be discussed in great detail, it is the adult stem cells that are used for decades as therapeutics. Hence, these cells will be compared to ES and iPS cells. Finally, special emphasis will be placed on the scientific, technical, and economic challenges of developing stem cell-based in vitro model systems and cell therapies that can be commercialized.
Collapse
Affiliation(s)
- Insa S Schroeder
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Planckstr. 29, 64291, Darmstadt, Germany,
| |
Collapse
|