1
|
Saigusa Y, Little MP, Azimzadeh O, Hamada N. Biological effects of high-LET irradiation on the circulatory system. Int J Radiat Biol 2025; 101:429-452. [PMID: 40063776 PMCID: PMC12011529 DOI: 10.1080/09553002.2025.2470947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE High-linear energy transfer (LET) radiation is generally thought to be more biologically effective in various tissues than low-LET radiation, but whether this also applies to the circulatory system remains unclear. We therefore reviewed biological studies about the effects of high-LET radiation on the circulatory system. CONCLUSIONS We identified 76 relevant papers (24 in vitro, 2 ex vivo, 51 in vivo, one overlapping). In vitro studies used human, bovine, porcine or chick vascular endothelial cells or cardiomyocytes, while ex vivo studies used porcine hearts. In vivo studies used mice, rats, rabbits, dogs or pigs. The types of high-LET radiation used were neutrons, α particles, heavy ions and negative pions. Most studies used a single dose, although some investigated fractionation effects. Twenty-one studies estimated the relative biological effectiveness (RBE) that ranged from 0.1 to 130, depending on radiation quality and endpoint. A meta-analysis of 6 in vitro and 8 in vivo studies (selected based on the feasibility of estimating the RBE and its uncertainty) suggested an RBE of 6.69 (95% confidence intervals (CI): 2.51, 10.88) for in vitro studies and 1.14 (95% CI: 0.91, 1.37) for in vivo studies. The meta-analysis of these 14 studies yielded an RBE of 2.88 (95% CI: 1.52, 4.25). This suggests that high-LET radiation is only slightly more effective than low-LET radiation, although substantial inter-study heterogeneity complicates interpretation. Therapeutic effects have also been reported in disease models. Further research is needed to better understand the effects on the cardiovascular system and to improve radiation protection.
Collapse
Affiliation(s)
- Yumi Saigusa
- Dosimetry Facility Management Section, Department of Nuclear Emergency Preparedness, Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-0024, Japan
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA
- Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba 270-1194, Japan
| |
Collapse
|
2
|
Liang S, Zhou G, Hu W. Research Progress of Heavy Ion Radiotherapy for Non-Small-Cell Lung Cancer. Int J Mol Sci 2022; 23:2316. [PMID: 35216430 PMCID: PMC8876478 DOI: 10.3390/ijms23042316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) has a high incidence and poses a serious threat to human health. However, the treatment outcomes of concurrent chemoradiotherapy for non-small-cell lung cancer are still unsatisfactory, especially for high grade lesions. As a new cancer treatment, heavy ion radiotherapy has shown promising efficacy and safety in the treatment of non-small-cell lung cancer. This article discusses the clinical progress of heavy ion radiotherapy in the treatment of non-small-cell lung cancer mainly from the different cancer stages, the different doses of heavy ion beams, and the patient's individual factors, and explores the deficiency of heavy ion radiotherapy in the treatment of non-small-cell lung cancer and the directions of future research, in order to provide reference for the wider and better application of heavy ion radiotherapy in the future.
Collapse
Affiliation(s)
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| |
Collapse
|
3
|
Li H, Zhang H, Huang G, Bing Z, Xu D, Liu J, Luo H, An X. Loss of RPS27a expression regulates the cell cycle, apoptosis, and proliferation via the RPL11-MDM2-p53 pathway in lung adenocarcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:33. [PMID: 35073964 PMCID: PMC8785590 DOI: 10.1186/s13046-021-02230-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Background Depletion of certain ribosomal proteins induces p53 activation, which is mediated mainly by ribosomal protein L5 (RPL5) and/or ribosomal protein L11 (RPL11). Therefore, RPL5 and RPL11 may link RPs and p53 activation. Thus, this study aimed to explore whether RPs interact with RPL11 and regulate p53 activation in lung adenocarcinoma (LUAD) cells. Methods The endogenous RPL11-binding proteins in A549 cells were pulled down through immunoprecipitation and identified with a proteomics approach. Docking analysis and GST-fusion protein assays were used to analyze the interaction of ribosomal protein S27a (RPS27a) and RPL11. Co-immunoprecipitation and in vitro ubiquitination assays were used to detect the effects of knockdown of RPS27a on the interaction between RPS27a and RPL11, and on p53 accumulation. Cell cycle, apoptosis, cell invasion and migration, cell viability and colony-formation assays were performed in the presence of knockdown of RPS27a. The RPS27a mRNA expression in LUAD was analyzed on the basis of the TCGA dataset, and RPS27a expression was detected through immunohistochemistry in LUAD samples. Finally, RPS27a and p53 expression was analyzed through immunohistochemistry in A549 cell xenografts with knockdown of RPS27a. Results RPS27a was identified as a novel RPL11 binding protein. GST pull-down assays revealed that RPS27a directly bound RPL11. Knockdown of RPS27a weakened the interaction between RPS27a and RPL11, but enhanced the binding of RPL11 and murine double minute 2 (MDM2), thereby inhibiting the ubiquitination and degradation of p53 by MDM2. Knockdown of RPS27a stabilized p53 in an RPL11-dependent manner and induced cell viability inhibition, cell cycle arrest and apoptosis in a p53-dependent manner in A549 cells. The expression of RPS27a was upregulated in LUAD and correlated with LUAD progression and poorer prognosis. Overexpression of RPS27a correlated with upregulation of p53, MDM2 and RPL11 in LUAD clinical specimens. Knockdown of RPS27a increased p53 activation, thus, suppressing the formation of A549 cell xenografts in nude mice. Conclusions RPS27a interacts with RPL11, and RPS27a knockdown enhanced the binding of RPL11 and MDM2, thereby inhibiting MDM2-mediated p53 ubiquitination and degradation; in addition, RPS27a as important roles in LUAD progression and prognosis, and may be a therapeutic target for patients with LUAD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02230-z.
Collapse
|
4
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Si Q, Ye Q, Bing Z, Fan R, Hu X, Liu B, Wang J, Liu Y, An X. Carbon Ion Irradiation Enhances the Anti-tumor Efficiency in Tongue Squamous Cell Carcinoma via Modulating the FAK Signaling. Front Public Health 2021; 9:631118. [PMID: 33634070 PMCID: PMC7901966 DOI: 10.3389/fpubh.2021.631118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 11/24/2022] Open
Abstract
Oral cancer is a very aggressive disease with high rates of recurrence and metastasis. This study aimed at addressing how efficiently tongue cancer is suppressed after carbon ion irradiation. Here, the close relationship between upregulated expression of focal adhesion kinase (FAK) and high metastatic status in tongue squamous cell carcinoma patients was validated using bioinformatics and immunohistochemical analyses. Our data indicated that FAK suppression significantly enhanced the killing effect induced by irradiation in the tongue cancer cell line CAL27, as evidenced by increased apoptotic induction and reduced colony formation. More importantly, in FAK-deficient cells, carbon ion irradiation was shown to remarkably inhibit migration and invasion by delaying wound healing and slowing down motility. Further studies revealed that irradiation exposure caused disorganization of the actin cytoskeleton and reduced cell adhesive energy in FAK-deficient cells. Moreover, carbon ion treatment, in combination with FAK silencing, markedly blocked the phosphorylation levels of FAK, and paxillin, which partly contributed to the reduced motility of tongue squamous cell carcinoma CAL27 cells. Collectively, these results suggest that the prominent obstructing role of carbon ion irradiation in the growth inhibition and metastatic behavior of tumors, including attenuation of cell adhesiveness, motility, and invasiveness, could be distinctly modulated by FAK-mediated downstream pathways.
Collapse
Affiliation(s)
- Qingzong Si
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Qian Ye
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ruihong Fan
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaoli Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Bin Liu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jizeng Wang
- Institute of Solid Mechanics, School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaoli An
- School of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Feng Z, Li C, Zheng Q, Mao W, Li T, Xing L, Li Q. Heavy-ion beam irradiation inhibits invasion of tongue squamous cell carcinoma Tca8113 cells. Oncol Lett 2019; 18:4092-4099. [PMID: 31516609 PMCID: PMC6733014 DOI: 10.3892/ol.2019.10761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/11/2019] [Indexed: 01/16/2023] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is a common malignant tumor type with aggressive biological characteristics, located in the oral and maxillofacial region. Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) have been implicated in the invasion and metastasis of various malignant tumor types, such as lung cancer and gastric carcinoma. High linear energy transfer (LET) particle irradiation has several advantages over conventional X-rays in suppressing the invasion and metastasis of malignant tumors. The objective of the present study was to investigate the effects of high-LET carbon ions and low-LET X-rays on the expression of VEGF and MMPs, and to identify the associated mechanisms in the Tca8113 TSCC cell line. Tca8113 cells were irradiated with carbon ions or X-rays at doses of 1 and 4 Gy. An immunofluorescence assay indicated that VEGF expression was notably decreased at 24 and 48 h after heavy ion irradiation compared with irradiation with conventional X-rays. The expression of MMP-2 and MMP-9 also decreased in a dose-dependent manner following heavy ion irradiation. These findings indicate that compared with low-LET X-ray irradiation, high-LET carbon ions possess higher biological efficacy in inhibiting the invasive ability of Tca8113 cells via reduction of VEGF, MMP-2 and MMP-9 expression.
Collapse
Affiliation(s)
- Zhenghu Feng
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology; Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Chunqing Li
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology; Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qian Zheng
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology; Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Weigang Mao
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Tao Li
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology; Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Long Xing
- Key Laboratory of Oral Diseases of Gansu Province, School of Stomatology; Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
7
|
Winter M, Dokic I, Schlegel J, Warnken U, Debus J, Abdollahi A, Schnölzer M. Deciphering the Acute Cellular Phosphoproteome Response to Irradiation with X-rays, Protons and Carbon Ions. Mol Cell Proteomics 2017; 16:855-872. [PMID: 28302921 DOI: 10.1074/mcp.m116.066597] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2 h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database.Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Because radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments.In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of functional studies aiming to decipher cellular signaling processes in response to radiotherapy, space radiation or ionizing radiation per se Further, our data will have a significant impact on the ongoing debate about patient treatment modalities.
Collapse
Affiliation(s)
- Martin Winter
- From the ‡Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.,§Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ivana Dokic
- §Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany.,‖Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany.,**Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Julian Schlegel
- §Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany.,‖Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany.,**Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Uwe Warnken
- From the ‡Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jürgen Debus
- §Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany.,‖Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany.,**Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- §Translational Radiation Oncology, National Center for Tumor diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,¶German Cancer Consortium (DKTK), Heidelberg, Germany.,‖Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany.,**Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Martina Schnölzer
- From the ‡Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany;
| |
Collapse
|
8
|
Ghorai A, Sarma A, Chowdhury P, Ghosh U. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells. Radiat Oncol 2016; 11:126. [PMID: 27659937 PMCID: PMC5034624 DOI: 10.1186/s13014-016-0703-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background Hadron therapy is an innovative technique where cancer cells are precisely killed leaving surrounding healthy cells least affected by high linear energy transfer (LET) radiation like carbon ion beam. Anti-metastatic effect of carbon ion exposure attracts investigators into the field of hadron biology, although details remain poor. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are well-known radiosensitizer and several PARP-1 inhibitors are in clinical trial. Our previous studies showed that PARP-1 depletion makes the cells more radiosensitive towards carbon ion than gamma. The purpose of the present study was to investigate combining effects of PARP-1 inhibition with carbon ion exposure to control metastatic properties in HeLa cells. Methods Activities of matrix metalloproteinases-2, 9 (MMP-2, MMP-9) were measured using the gelatin zymography after 85 MeV carbon ion exposure or gamma irradiation (0- 4 Gy) to compare metastatic potential between PARP-1 knock down (HsiI) and control cells (H-vector - HeLa transfected with vector without shRNA construct). Expression of MMP-2, MMP-9, tissue inhibitor of MMPs such as TIMP-1, TIMP-2 and TIMP-3 were checked by immunofluorescence and western blot. Cell death by trypan blue, apoptosis and autophagy induction were studied after carbon ion exposure in each cell-type. The data was analyzed using one way ANOVA and 2-tailed paired-samples T-test. Results PARP-1 silencing significantly reduced MMP-2 and MMP-9 activities and carbon ion exposure further diminished their activities to less than 3 % of control H-vector. On the contrary, gamma radiation enhanced both MMP-2 and MMP-9 activities in H-vector but not in HsiI cells. The expression of MMP-2 and MMP-9 in H-vector and HsiI showed different pattern after carbon ion exposure. All three TIMPs were increased in HsiI, whereas only TIMP-1 was up-regulated in H-vector after irradiation. Notably, the expressions of all TIMPs were significantly higher in HsiI than H-vector at 4 Gy. Apoptosis was the predominant mode of cell death and no autophagic death was observed. Conclusions Our study demonstrates for the first time that PARP-1 inhibition in combination with carbon ion synergistically decreases MMPs activity along with overall increase of TIMPs. These data open up the possibilities of improvement of carbon ion therapy with PARP-1 inhibition to control highly metastatic cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13014-016-0703-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atanu Ghorai
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India.,Present address: Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Colaba, Mumbai, 400005, India
| | - Asitikantha Sarma
- Inter-University Accelerator Center (IUAC), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Chowdhury
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India.
| |
Collapse
|
9
|
Riquier H, Abel D, Wera AC, Heuskin AC, Genard G, Lucas S, Michiels C. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System. Cancers (Basel) 2015; 7:481-502. [PMID: 25794049 PMCID: PMC4381270 DOI: 10.3390/cancers7010481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/10/2015] [Indexed: 01/28/2023] Open
Abstract
Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.
Collapse
Affiliation(s)
- Hélène Riquier
- URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Denis Abel
- URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium.
| | | | | | - Géraldine Genard
- URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Stéphane Lucas
- LARN-PMR, NARILIS, University of Namur, Namur 5000, Belgium.
| | - Carine Michiels
- URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium.
| |
Collapse
|