1
|
Wang W, Li S, Hao Y, Cui B, Zheng X, Yan L, Yang X. MicroRNA-365-3p inhibits bone marrow mesenchymal stem cell differentiation into islet-like cell clusters via targeting Pax6 and inhibiting the MEK/ERK pathway. Minerva Endocrinol (Torino) 2023; 48:420-431. [PMID: 34160186 DOI: 10.23736/s2724-6507.21.03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Diabetes has severe impacts on the health of patients. The differentiation of mesenchymal stem cells (MSCs) into islet-like cell clusters (ICCs) is an effective protocol for the treatment of diabetes. microRNAs (miRs) regulate multiple cellular processes including cell differentiation. This study sought to identify the mechanism of miR-365-3p in the differentiation of bone marrow MSCs (bMSCs) into ICCs. METHODS Initially, the differentiation of bMSCs into ICCs was induced. Then, the miR-365-3p expression pattern in the bMSCs and ICCs was detected. Next, the miR-365-3p expression pattern was silenced in bMSCs to assess the effect on differentiation efficiency and measure the expressions of ICC marker genes during the differentiation of bMSCs into ICCs. The miR-365-3p downstream target genes were predicted and verified. Paired box protein 6 (Pax6) was downregulated in bMSCs with silenced miR-365-3p to evaluate the differentiation of bMSCs into ICCs. Furthermore, the Pax6 downstream pathway was evaluated. RESULTS The differentiation of bMSCs into ICCs was successfully induced. The miR-365-3p expression in bMSCs was higher than that in ICCs. miR-365-3p downregulation in bMSCs facilitated the differentiation of bMSCs into ICCs, as evidenced by elevated releases of insulin and C-peptide in ICCs and elevated expressions of ICC marker genes. Our findings denoted that miR-365-3p targeted Pax6. Inhibition of Pax6 expression annulled the promotion of miR-365-3p downregulation on the differentiation of bMSCs into ICCs. Increased phosphorylation levels of MEK and ERK were identified in ICCs after downregulation of miR-365-3p however they were decreased after downregulation of Pax6. CONCLUSIONS This study supported that miR-365-3p inhibited the differentiation of bMSCs into ICCs via targeting Pax6 and inhibiting the MEK/ERK pathway.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, China
| | - Shu Li
- Department of Medical Function, Mudanjiang Medical University, Mudanjiang, China
| | - Yankun Hao
- Department of Medical Function, Mudanjiang Medical University, Mudanjiang, China
| | - Baixiang Cui
- Department of Pathology, The Second Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xuezhi Zheng
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, China
| | - Lei Yan
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, China
| | - Xufang Yang
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, China -
| |
Collapse
|
2
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
3
|
Rajabi H, Aslani S, Abhari A, Sanajou D. Expression Profiles of MicroRNAs in Stem Cells Differentiation. Curr Pharm Biotechnol 2020; 21:906-918. [PMID: 32072899 DOI: 10.2174/1389201021666200219092520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Stem cells are undifferentiated cells and have a great potential in multilineage differentiation. These cells are classified into adult stem cells like Mesenchymal Stem Cells (MSCs) and Embryonic Stem Cells (ESCs). Stem cells also have potential therapeutic utility due to their pluripotency, self-renewal, and differentiation ability. These properties make them a suitable choice for regenerative medicine. Stem cells differentiation toward functional cells is governed by different signaling pathways and transcription factors. Recent studies have demonstrated the key role of microRNAs in the pathogenesis of various diseases, cell cycle regulation, apoptosis, aging, cell fate decisions. Several types of stem cells have different and unique miRNA expression profiles. Our review summarizes novel regulatory roles of miRNAs in the process of stem cell differentiation especially adult stem cells into a variety of functional cells through signaling pathways and transcription factors modulation. Understanding the mechanistic roles of miRNAs might be helpful in elaborating clinical therapies using stem cells and developing novel biomarkers for the early and effective diagnosis of pathologic conditions.
Collapse
Affiliation(s)
- Hadi Rajabi
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Aslani
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Brettle M, Stefen H, Djordjevic A, Fok SYY, Chan JW, van Hummel A, van der Hoven J, Przybyla M, Volkerling A, Ke YD, Delerue F, Ittner LM, Fath T. Developmental Expression of Mutant PFN1 in Motor Neurons Impacts Neuronal Growth and Motor Performance of Young and Adult Mice. Front Mol Neurosci 2019; 12:231. [PMID: 31611772 PMCID: PMC6776973 DOI: 10.3389/fnmol.2019.00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with limited treatment and no cure. Mutations in profilin 1 were identified as a cause of familial ALS (fALS) in 2012. We investigated the functional impact of mutant profilin 1 expression in spinal cords during mouse development. We developed a novel mouse model with the expression of profilin 1 C71G under the control of the Hb9 promoter, targeting expression to α-motor neurons in the spinal cord during development. Embryos of transgenic mice showed evidence of a significant reduction of brachial nerve diameter and a loss of Mendelian inheritance. Despite the lack of transgene expression, adult mice presented with significant motor deficits. Transgenic mice had a significant reduction in the number of motor neurons in the spinal cord. Further analysis of these motor neurons in aged transgenic mice revealed reduced levels of TDP-43 and ChAT expression. Although profilin 1 C71G was only expressed during development, adult mice presented with some ALS-associated pathology and motor symptoms. This study highlights the effect of profilin 1 during neurodevelopment and the impact that this may have in later ALS.
Collapse
Affiliation(s)
- Merryn Brettle
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Randwick, NSW, Australia
| | - Holly Stefen
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Aleksandra Djordjevic
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Sandra Y Y Fok
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Randwick, NSW, Australia
| | - Josephine W Chan
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexander Volkerling
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Thomas Fath
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Gao H, Duan Y, Fu X, Xie H, Liu Y, Yuan H, Zhou M, Xie C. Comparison of efficacy of SHENQI compound and rosiglitazone in the treatment of diabetic vasculopathy analyzing multi-factor mediated disease-causing modules. PLoS One 2018; 13:e0207683. [PMID: 30521536 PMCID: PMC6283585 DOI: 10.1371/journal.pone.0207683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis-predominant vasculopathy is a common complication of diabetes with high morbidity and high mortality, which is ruining the patient's daily life. As is known to all, traditional Chinese medicine (TCM) SHENQI compound and western medicine rosiglitazone play an important role in the treatment of diabetes. In particular, SHENQI compound has a significant inhibitory effect on vascular lesions. Here, to explore and compare the therapeutic mechanism of SHENQI compound and rosiglitazone on diabetic vasculopathy, we first built 7 groups of mouse models. The behavioral, physiological and pathological morphological characteristics of these mice showed that SHENQI compound has a more comprehensive curative effect than rosiglitazone and has a stronger inhibitory effect on vascular lesions. While rosiglitazone has a more effective but no significant effect on hypoglycemic. Further, based on the gene expression of mice in each group, we performed differential expression analysis. The functional enrichment analysis of these differentially expressed genes (DEGs) revealed the potential pathogenesis and treatment mechanisms of diabetic angiopathy. In addition, we found that SHENQI compound mainly exerts comprehensive effects by regulating MCM8, IRF7, CDK7, NEDD4L by pivot regulator analysis, while rosiglitazone can rapidly lower blood glucose levels by targeting PSMD3, UBA52. Except that, we also identified some pivot TFs and ncRNAs for these potential disease-causing DEG modules, which may the mediators bridging drugs and modules. Finally, similar to pivot regulator analysis, we also identified the regulation of some drugs (e.g. bumetanide, disopyramide and glyburide etc.) which have been shown to have a certain effect on diabetes or diabetic angiopathy, proofing the scientific and objectivity of this study. Overall, this study not only provides an in-depth comparison of the efficacy of SHENQI compound and rosiglitazone in the treatment of diabetic vasculopathy, but also provides clinicians and drug designers with valuable theoretical guidance.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/pathology
- Cardiovascular Agents/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetic Angiopathies/drug therapy
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/pathology
- Disease Models, Animal
- Drugs, Chinese Herbal/therapeutic use
- Gene Expression/drug effects
- Humans
- Hypoglycemic Agents/therapeutic use
- Male
- Medicine, Chinese Traditional
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Phytotherapy
- Rosiglitazone/therapeutic use
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Hong Gao
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Duan
- Department Two of Endocrinology, Teaching Hospital, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Xiaoxu Fu
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Liu
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haipo Yuan
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyang Zhou
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Teaching Hospital, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- * E-mail:
| |
Collapse
|
6
|
La Sala L, Micheloni S, De Nigris V, Prattichizzo F, Ceriello A. Novel insights into the regulation of miRNA transcriptional control: implications for T2D and related complications. Acta Diabetol 2018; 55:989-998. [PMID: 29732466 DOI: 10.1007/s00592-018-1149-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetics has emerged as an important form of biological regulation involving chromatin control of gene expression. The mechanisms of this fine-tuned regulation are susceptible to changes forced by environmental stimuli and nutritional factors and may be potentially reversible. Dysregulation of epigenetic processes has important consequences for the pathogenesis of complex and multifactorial diseases such as type 2 diabetes (T2D) and vascular complications. Along with DNA methylation (DNA-me), histone modifications and RNA-based mechanisms as the major epigenetic controllers, small non-coding RNAs known as microRNAs (miRNAs) have their own important implications for the pathogenesis of diabetes. There is increasing evidence supporting the role of miRNAs in modulating gene expression, cumulatively contributing to epigenetic gene silencing by acting either on the methylation status of the cells or in alternative roles. Although significant progress has been made in the characterization of miRNA functions, most miRNA promoters have not yet been characterized, and the transcriptional regulation of miRNAs remains elusive. The present work is centred on the new biological insights pertaining to the epigenetics-miRNA regulatory axis, focusing on the development of T2D and cardiovascular complications, and the ability of these mechanisms to interact in a network of DNA-me regulation. The genomic organization of inter- and intragenic miRNA genes is discussed, and the mutual connections between pre-mRNA splicing and miRNA biogenesis are summarized, along with the discovery of novel miRNA transcriptional regulation sites.
Collapse
Affiliation(s)
- Lucia La Sala
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy.
| | - Stefano Micheloni
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
| | - Valeria De Nigris
- Institut d'Investigación Biomédiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Hospital Clinic, Barcelona, Spain
| | - Francesco Prattichizzo
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
| | - Antonio Ceriello
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
- Institut d'Investigación Biomédiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
7
|
The role of miR-122-5p in negatively regulating T-box brain 1 expression on the differentiation of mouse bone mesenchymal stem cells. Neuroreport 2018; 28:367-374. [PMID: 28240720 DOI: 10.1097/wnr.0000000000000752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To achieve neuronal differentiation of mouse bone mesenchymal stem cells (bMSCs) into neuron-like cells and explore the role of miR-122-5p that may regulate T-box brain 1 (Tbr1) expression during the induction. BMSCs were cultured and induced with butylated hydroxyanisole, retinoic acid (RA), basic fibroblast growth factor, and nerve growth factor in vitro. The cells were stained for neuron-specific enolase (NSE) and β-III-tubulin by immunocytochemistry/immunofluorescence. MiR-122-5p that may regulate Tbr1 expression was predicted by bioinformatics and identified using a Dual-Luciferase assay. The expressions of miR-122-5p and Tbr1 were determined by real-time PCR and western blot before and after the induction. After infection of miR-122-5p, the expressions of Tbr1, NSE, and tauons were measured. BMSCs showed a short spindle shape with a uniform distribution. After 14 days, the induced cells showed neuronal traits with a pyramidal appearance. TargetScan and miRanda showed that miR-122-5p was well complementary with the target site of the Tbr1 3'-untranslated region. Identified by the Dual-Luciferase assay, we found that miR-122-5p could inhibit Tbr1 expression by binding to its 3'-untranslated region. Furthermore, the expressions of Tbr1 mRNA and protein were decreased by real-time PCR and western blot. Overexpression of miR-122-5p downregulated the expressions of Tbr1, NSE, and tauons. MiR-122-5p may negatively regulate Tbr1 expression to affect the differentiation of bMSCs into neuron-like cells.
Collapse
|