1
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
2
|
Błaszczyk M, Gajewska M, Dymowska M, Majewska A, Domoradzki T, Prostek A, Pingwara R, Hulanicka M, Grzelkowska-Kowalczyk K. Interleukin-6 mimics insulin-dependent cellular distribution of some cytoskeletal proteins and Glut4 transporter without effect on glucose uptake in 3T3-L1 adipocytes. Histochem Cell Biol 2022; 157:525-546. [PMID: 35230485 DOI: 10.1007/s00418-022-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
Abstract
Interleukin (IL)-6, a known proinflammatory cytokine, is released in both visceral adipose tissue and contracting skeletal muscle. In this study, we used microRNA profiling as a screening method to identify miRNA species modified by IL-6 treatment in mouse 3T3-L1 adipocytes. miRNA microarray analysis and qRT-PCR revealed increased expression of miR-146b-3p in adipocytes exposed to IL-6 (1 ng/ml) during 8-day differentiation. On the basis of ontological analysis of potential targets, selected proteins associated with cytoskeleton and transport were examined in the context of adipocyte response to insulin, using immunofluorescence and confocal microscopy. We concluded that IL-6: (i) does not affect insulin action on actin cellular distribution; (ii) modulates the effect of insulin on myosin light chain kinase (Mylk) distribution by preventing its shift toward cytoplasm; (iii) mimics the effect of insulin on dynein distribution by increasing its near-nuclear accumulation; (iv) mimics the effect of insulin on glucose transporter Glut4 distribution, especially by increasing its near-nuclear accumulation; (v) supports insulin action on early endosome marker Rab4A near-nuclear accumulation. Moreover, as IL-6 did not disturb insulin-dependent glucose uptake, our results do not confirm the IL-6-induced impairment of insulin action observed in some in vitro studies, suggesting that the effect of IL-6 is dose dependent.
Collapse
Affiliation(s)
- Maciej Błaszczyk
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Marta Dymowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Domoradzki
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Adam Prostek
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Magdalena Hulanicka
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
3
|
Milewska M, Domoradzki T, Majewska A, Błaszczyk M, Gajewska M, Hulanicka M, Grzelkowska-Kowalczyk K. Interleukin-6 affects pacsin3, ephrinA4 expression and cytoskeletal proteins in differentiating primary skeletal myoblasts through transcriptional and post-transcriptional mechanisms. Cell Tissue Res 2019; 380:155-172. [PMID: 31820147 DOI: 10.1007/s00441-019-03133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-6 is a proinflammatory cytokine released in injured and contracting skeletal muscles. In this study, we examined cellular expression of proteins associated with cytoskeleton organization and cell migration, chosen on the basis of microRNA profiling, in rat primary skeletal muscle cells (RSkMC) treated with IL-6 (1 ng/ml) for 11 days. MiRNA microarray analysis and qRT-PCR revealed increased expression of miR-154-3p and miR-338-3p in muscle cells treated with IL-6. Pacsin3 was downregulated post-transcriptionally by IL-6, but not by IGF-I. Ephrin4A protein was increased both in IL-6- and IGF-I-treated myocytes. IL-6, but not IGF-I, stimulated migratory ability of RSkMC, examined in wound healing assay. Alpha-actinin protein was slightly augmented in RSKMC treated with IL-6, similarly to IGF-I. IL-6, but not IGF-I, upregulated desmin in differentiating RSkMC. IL-6 supplementation caused accumulation of alpha-actinin and desmin in near-nuclear area of muscle cells, which was manifested by increased ratio: mean near-nuclear fluorescence/mean peripheral cytoplasm fluorescence of these proteins. We concluded that IL-6, a known proinflammatory cytokine and a physical activity-associated myokine, acting during differentiation of primary skeletal muscle cells, alters expression of nonmuscle-specific miRNAs. This cytokine causes differential effects on pacsin-3 and ephrinA4, through post-transcriptional inhibition and stimulation, respectively. IL-6-exerted modifications of cytoskeletal proteins in muscle cells include both transcriptional (desmin and dynein heavy chain 5) and post-transcriptional activation (alpha-actinin). Moreover, IL-6 augments near-nuclear distribution of cytoskeletal proteins, alpha-actinin and desmin and promotes migration of myocytes. Such effects suggest that IL-6 plays a role during skeletal muscle regeneration, acting through mechanisms independent of regulation of myogenic program.
Collapse
Affiliation(s)
- Marta Milewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Domoradzki
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Alicja Majewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Maciej Błaszczyk
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Magdalena Hulanicka
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Grzelkowska-Kowalczyk
- Institute of Veterinary Medicine, Department of Physiological Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
4
|
Milewska M, Domoradzki T, Majewska A, Błaszczyk M, Gajewska M, Hulanicka M, Ciecierska A, Grzelkowska-Kowalczyk K. Interleukin-8 enhances myocilin expression, Akt-FoxO3 signaling and myogenic differentiation in rat skeletal muscle cells. J Cell Physiol 2019; 234:19675-19690. [PMID: 30945300 DOI: 10.1002/jcp.28568] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-8 is released both in visceral adipose tissue and in contracting skeletal muscles. In this study, we examined cellular pathways associated with muscle hypertrophy, chosen on the basis of microRNA profiling, in differentiating rat primary skeletal muscle cells (RSkMC) treated with IL-8 (1 ng/ml) for 11 days. IL-8 increased myocilin expression, Akt phosphorylation, FoxO3 dispersion throughout the cytoplasm, and reduced FoxO3 level. IL-8 decreased the expression of atrogin and MuRF1 and increased myotube length and diameter. We concluded that IL-8 present in extracellular environment of myoblasts induced to differentiation stimulates expression of myocilin, a protein important for skeletal muscle hypertrophy. This phenomenon was associated with: (a) activation of myogenic transcription, (b) increased phosphorylation and activation of PKB/Akt, leading to (c) cytoplasm distribution and degradation of a transcription factor FoxO3, (d) decreased expression of gene markers of proteolysis, atrogin and Murf1, and (e) increased myotube length and diameter. In this regard, IL-8 affects skeletal muscle cells similarly to IGF-I and can be considered as a potent anticatabolic factor for skeletal muscle.
Collapse
Affiliation(s)
- Marta Milewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Tomasz Domoradzki
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Maciej Błaszczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Magdalena Hulanicka
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Anna Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Katarzyna Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| |
Collapse
|