1
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
2
|
Oppezzo A, Bourseguin J, Renaud E, Pawlikowska P, Rosselli F. Microphthalmia transcription factor expression contributes to bone marrow failure in Fanconi anemia. J Clin Invest 2020; 130:1377-1391. [PMID: 31877112 DOI: 10.1172/jci131540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) attrition is considered the key event underlying progressive BM failure (BMF) in Fanconi anemia (FA), the most frequent inherited BMF disorder in humans. However, despite major advances, how the cellular, biochemical, and molecular alterations reported in FA lead to HSC exhaustion remains poorly understood. Here, we demonstrated in human and mouse cells that loss-of-function of FANCA or FANCC, products of 2 genes affecting more than 80% of FA patients worldwide, is associated with constitutive expression of the transcription factor microphthalmia (MiTF) through the cooperative, unscheduled activation of several stress-signaling pathways, including the SMAD2/3, p38 MAPK, NF-κB, and AKT cascades. We validated the unrestrained Mitf expression downstream of p38 in Fanca-/- mice, which display hallmarks of hematopoietic stress, including loss of HSC quiescence, DNA damage accumulation in HSCs, and reduced HSC repopulation capacity. Importantly, we demonstrated that shRNA-mediated downregulation of Mitf expression or inhibition of p38 signaling rescued HSC quiescence and prevented DNA damage accumulation. Our data support the hypothesis that HSC attrition in FA is the consequence of defects in the DNA-damage response combined with chronic activation of otherwise transiently activated signaling pathways, which jointly prevent the recovery of HSC quiescence.
Collapse
Affiliation(s)
- Alessia Oppezzo
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Orsay, France
| | - Julie Bourseguin
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Orsay, France
| | - Emilie Renaud
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France
| | - Patrycja Pawlikowska
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Orsay, France
| | - Filippo Rosselli
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Orsay, France
| |
Collapse
|
3
|
Upregulation of CASP9 through NF-κB and Its Target MiR-1276 Contributed to TNFα-promoted Apoptosis of Cancer Cells Induced by Doxorubicin. Int J Mol Sci 2020; 21:ijms21072290. [PMID: 32225068 PMCID: PMC7177739 DOI: 10.3390/ijms21072290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Under some conditions, nuclear factor-κB (NF-κB) has a pro-apoptotic role, but the mechanisms underlying this function remain unclear. This study demonstrated that NF-κB directly binds to CASP9 and miR1276 in tumor necrosis factor α (TNFα)-treated HeLa and HepG2 cells. NF-κB upregulated CASP9 expression, whereas downregulated miR1276 expression in the TNFα-treated cells. The miR1276 repressed CASP9 expression in both cells. As a result, a typical NF-κB-mediated coherent feed-forward loop was formed in the TNFα-treated cells. It was proposed that the NF-κB-mediated loop may contribute to cell apoptosis under certain conditions. This opinion was supported by the following evidence: TNFα promoted the apoptosis of HeLa and HepG2 cells induced by doxorubicin (DOX). CASP9 was significantly upregulated and activated by TNFα in the DOX-induced cells. Moreover, a known inhibitor of CASP9 activation significantly repressed the TNFα promotion of apoptosis induced by DOX. These findings indicate that CASP9 is a new mediator of the NF-κB pro-apoptotic pathway, at least in such conditions. This study therefore provides new insights into the pro-apoptotic role of NF-κB. The results also shed new light on the molecular mechanism underlying TNFα-promotion of cancer cells apoptosis induced by some anticancer drugs such as DOX.
Collapse
|
4
|
Zhu H, Li Y, Wang MX, Wang JH, Du WX, Zhou F. Analysis of cardiovascular disease-related NF-κB-regulated genes and microRNAs in TNFα-treated primary mouse vascular endothelial cells. J Zhejiang Univ Sci B 2020; 20:803-815. [PMID: 31489800 DOI: 10.1631/jzus.b1800631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated nuclear factor-κB (NF-κB) plays an important role in the development of cardiovascular disease (CVD) through its regulated genes and microRNAs (miRNAs). However, the gene regulation profile remains unclear. In this study, primary mouse vascular endothelial cells (pMVECs) were employed to detect CVD-related NF-κB-regulated genes and miRNAs. Genechip assay identified 77 NF-κB-regulated genes, including 45 upregulated and 32 downregulated genes, in tumor necrosis factor α (TNFα)-treated pMVECs. Ten of these genes were also found to be regulated by NF-κB in TNFα-treated HeLa cells. Quantitative real-time PCR (qRT-PCR) assay confirmed the up-regulation of Egr1, Tnf, and Btg2 by NF-κB in the TNFα-treated pMVECs. The functional annotation revealed that many NF-κB-regulated genes identified in pMVECs were clustered into classical NF-κB-involved biological processes. Genechip assay also identified 26 NF-κB-regulated miRNAs, of which 21 were upregulated and 5 downregulated, in the TNFα-treated pMVECs. Further analysis showed that nine of the identified genes are regulated by seven of these miRNAs. Finally, among the identified NF-κB-regulated genes and miRNAs, 5 genes and 12 miRNAs were associated with CVD by miRWalk and genetic association database analysis. Taken together, these findings show an intricate gene regulation network raised by NF-κB in TNFα-treated pMVECs. The network provides new insights for understanding the molecular mechanism underlying the progression of CVD.
Collapse
Affiliation(s)
- Hui Zhu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Yun Li
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Mao-Xian Wang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Ju-Hong Wang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Wen-Xin Du
- Shandong Center for Drug and Food Evaluation & Certification, Jinan 250014, China
| | - Fei Zhou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
5
|
Dai W, Wu J, Wang D, Wang J. Cancer gene therapy by NF-κB-activated cancer cell-specific expression of CRISPR/Cas9 targeting telomeres. Gene Ther 2020; 27:266-280. [DOI: 10.1038/s41434-020-0128-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
|
6
|
Salvianolic acid B protects against ANIT-induced cholestatic liver injury through regulating bile acid transporters and enzymes, and NF-κB/IκB and MAPK pathways. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1169-1180. [PMID: 31098695 DOI: 10.1007/s00210-019-01657-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the pharmacological effects of salvianolic acid B (SA-B) on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury with the focus on bile acid homeostasis and anti-inflammatory pathways. Rats were randomly assigned into four groups. The control group was given normal saline (i.p.) for 7 consecutive days and on the 5th day was given the vehicle (i.g.). Model group was treated with normal saline (i.p.) for 7 days and administrated with ANIT (75 mg/kg, i.g.) on the 5th day. The SA-B groups were treated with SA-B (15 mg/kg and 30 mg/kg, i.p.) for 7 consecutive days as well as ANIT (75 mg/kg, i.g.) on the 5th day. We found that the serum levels of ALT, γ-GT, TBA, and other liver function indexes were found to be lower in the SA-B treatment groups than in the model group. SA-B also upregulated the transporters and enzymes involved in bile acid homeostasis such as Bsep, Oatp2, and Cyp3a2 in rats and BSEP, CYP3A4, and OATP2 in human cell lines. Moreover, SA-B suppressed NF-κB translocation into the nucleus, inhibited phosphorylation of p38 and JNK, and inhibited inflammation markers including IL-1β, IL-6, TGF-β, TNF-α, and COX-2 to extenuate cholestatic liver injury both in vivo and vitro. Taken together, our findings suggest that anti-cholestatic effects of SA-B may be associated with its ability to regulate NF-κB/IκB and MAPK inflammatory signaling pathways to inhibit inflammation and regulate transporters and enzymes to maintain bile acid homeostasis.
Collapse
|
7
|
Méndez C, Ledger S, Petoumenos K, Ahlenstiel C, Kelleher AD. RNA-induced epigenetic silencing inhibits HIV-1 reactivation from latency. Retrovirology 2018; 15:67. [PMID: 30286764 PMCID: PMC6172763 DOI: 10.1186/s12977-018-0451-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Current antiretroviral therapy is effective in controlling HIV-1 infection. However, cessation of therapy is associated with rapid return of viremia from the viral reservoir. Eradicating the HIV-1 reservoir has proven difficult with the limited success of latency reactivation strategies and reflects the complexity of HIV-1 latency. Consequently, there is a growing need for alternate strategies. Here we explore a "block and lock" approach for enforcing latency to render the provirus unable to restart transcription despite exposure to reactivation stimuli. Reactivation of transcription from latent HIV-1 proviruses can be epigenetically blocked using promoter-targeted shRNAs to prevent productive infection. We aimed to determine if independent and combined expression of shRNAs, PromA and 143, induce a repressive epigenetic profile that is sufficiently stable to protect latently infected cells from HIV-1 reactivation when treated with a range of latency reversing agents (LRAs). RESULTS J-Lat 9.2 cells, a model of HIV-1 latency, expressing shRNAs PromA, 143, PromA/143 or controls were treated with LRAs to evaluate protection from HIV-1 reactivation as determined by levels of GFP expression. Cells expressing shRNA PromA, 143, or both, showed robust resistance to viral reactivation by: TNF, SAHA, SAHA/TNF, Bryostatin/TNF, DZNep, and Chaetocin. Given the physiological importance of TNF, HIV-1 reactivation was induced by TNF (5 ng/mL) and ChIP assays were performed to detect changes in expression of epigenetic markers within chromatin in both sorted GFP- and GFP+ cell populations, harboring latent or reactivated proviruses, respectively. Ordinary two-way ANOVA analysis used to identify interactions between shRNAs and chromatin marks associated with repressive or active chromatin in the integrated provirus revealed significant changes in the levels of H3K27me3, AGO1 and HDAC1 in the LTR, which correlated with the extent of reduced proviral reactivation. The cell line co-expressing shPromA and sh143 consistently showed the least reactivation and greatest enrichment of chromatin compaction indicators. CONCLUSION The active maintenance of epigenetic silencing by shRNAs acting on the HIV-1 LTR impedes HIV-1 reactivation from latency. Our "block and lock" approach constitutes a novel way of enforcing HIV-1 "super latency" through a closed chromatin architecture that renders the virus resistant to a range of latency reversing agents.
Collapse
Affiliation(s)
- Catalina Méndez
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Scott Ledger
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Kathy Petoumenos
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Chantelle Ahlenstiel
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia.
| | - Anthony D Kelleher
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
8
|
Zhao M, Joy J, Zhou W, De S, Wood WH, Becker KG, Ji H, Sen R. Transcriptional outcomes and kinetic patterning of gene expression in response to NF-κB activation. PLoS Biol 2018; 16:e2006347. [PMID: 30199532 PMCID: PMC6147668 DOI: 10.1371/journal.pbio.2006347] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/20/2018] [Accepted: 08/23/2018] [Indexed: 11/26/2022] Open
Abstract
Transcription factor nuclear factor kappa B (NF-κB) regulates cellular responses to environmental cues. Many stimuli induce NF-κB transiently, making time-dependent transcriptional outputs a fundamental feature of NF-κB activation. Here we show that NF-κB target genes have distinct kinetic patterns in activated B lymphoma cells. By combining RELA binding, RNA polymerase II (Pol II) recruitment, and perturbation of NF-κB activation, we demonstrate that kinetic differences amongst early- and late-activated RELA target genes can be understood based on chromatin configuration prior to cell activation and RELA-dependent priming, respectively. We also identified genes that were repressed by RELA activation and others that responded to RELA-activated transcription factors. Cumulatively, our studies define an NF-κB-responsive inducible gene cascade in activated B cells. The nuclear factor kappa B (NF-κB) family of transcription factors regulates cellular responses to a wide variety of environmental cues. These could be extracellular stimuli that activate cell surface receptors, such as pathogens, or intracellular stress signals such as DNA damage or oxidative stress. In response to these triggers, NF-κB proteins accumulate in the cell nucleus, bind to specific DNA sequences in the genome, and thereby modulate gene transcription. Because of the diversity of signals that activate NF-κB and the ubiquity of this pathway in most cell types, cellular outcomes via NF-κB activation must be finely tuned to respond to the initiating stimulus. One mechanism by which NF-κB-dependent gene expression is regulated is by varying the duration of nuclear NF-κB; some signals lead to persistent nuclear NF-κB, while others lead to transient nuclear NF-κB. Consequently, time dependency of transcriptional responses is a unique signature of the initiating stimulus. Here we probed mechanisms that generate kinetic patterns of NF-κB-dependent gene expression in B lymphoma cells responding to a transient NF-κB-activating stimulus. By genetically manipulating NF-κB induction, we identified direct targets of RELA, a member of the NF-κB family, and provide evidence that kinetic patterns are established by a combination of factors that include the chromatin state of genes prior to cell activation and cofactors that work with RELA.
Collapse
Affiliation(s)
- Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Jaimy Joy
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Supriyo De
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - William H. Wood
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|