1
|
Song C, Wang G, Liu M, Han S, Dong M, Peng M, Wang W, Wang Y, Xu Y, Liu L. Deciphering the SOX4/MAPK1 regulatory axis: a phosphoproteomic insight into IQGAP1 phosphorylation and pancreatic Cancer progression. J Transl Med 2024; 22:602. [PMID: 38943117 PMCID: PMC11212360 DOI: 10.1186/s12967-024-05377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVE This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Song
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
| | - Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Mengmeng Liu
- Department of Gastroenterology, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Siyang Han
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, PR China
| | - Maozhen Peng
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Yicun Wang
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China.
| | - Yaolin Xu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
| | - Liang Liu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China.
| |
Collapse
|
2
|
Dan Y, Yang L, Zhang H, Ren Y, He H, Yang F, Zhu J, Xiang H. The orf virus 129 protein can inhibit immune responses by interacting with host complement C1q binding protein in goat turbinate bone cells. Vet Microbiol 2023; 283:109782. [PMID: 37270925 DOI: 10.1016/j.vetmic.2023.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Contagious ecthyma is a severe and highly contagious disease caused by an orf virus (ORFV). The virus is responsible for substantial economic losses in the goat industry and threatens humans. We previously determined the role of ORFV129 protein, one of the five ankyrin-repeat proteins coded by the orf genome, in suppressing the transcription of pro-inflammatory cytokines IL-6, IL-1β and IFN-γ. In the present study, we identified 14 cellular proteins (complement C1q binding protein [C1QBP], MCM7, EIF5A, PKM, SLC6A, TSPAN6, ATP6AP2, GPS1, MMADHC, HSPB6, SLC35B1, MTF1, P3H4, and IL15RA) that interact with ORFV129 using a yeast two-hybrid system in goat turbinate bone cells (GFTCs). The interaction between ORFV129 and (C1QBP), an immune-related protein, was confirmed using immunofluorescence co-localization and co-immunoprecipitation assays. C1QBP overexpression inhibited ORFV replication, whereas the knockdown of C1QBP promoted ORFV replication in GFTCs. Furthermore, ORFV or ORFV129 increased C1QBP expression in GFTCs, indicated that ORFV129-C1QBP interaction might contribute to the ORFV-induced host immune process. In addition, our research showed that ORFV increased the expression of ORFV129, cytokine IL-6, IL-1β and IFN-γ. C1QBP overexpression induced IFN-γ production and reduced IL-6 and IL-1β production. Conversely, C1QBP knockdown induced IL-1β production and reduced IFN-γ and IL-1β production. Moreover, augmentation of ORFV129 expression enhanced the inhibition of the secretion of cytokines IL-6, IL-1β, and IFN-γ induced by the altered expression of C1QBP. These findings suggest different downstream pathways might be involved in regulating different cytokines induced by ORFV129 expression in GFTCs.
Collapse
Affiliation(s)
- Yixin Dan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Lu Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Huanrong Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yupeng Ren
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Honghong He
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Falong Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China.
| | - Hua Xiang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
3
|
Adachi Y, Sato N, Oba T, Amaike T, Kudo Y, Kohi S, Nakayama T, Hirata K. Prognostic and functional role of hyaluronan‑binding protein 1 in pancreatic ductal adenocarcinoma. Oncol Lett 2022; 24:222. [PMID: 35720501 PMCID: PMC9178692 DOI: 10.3892/ol.2022.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan-binding protein 1 (HABP1) is among the molecules known to bind to hyaluronan and is involved in a variety of cellular processes, including cell proliferation and migration. HABP1 has been implicated in the progression of various cancers; however, there have been (to the best of our knowledge) few studies on the expression and function of HABP1 in pancreatic ductal adenocarcinoma (PDAC), a topic that is examined in the present study. Immunohistochemical analysis of HABP1 protein was conducted in archival tissues from 105 patients with PDAC. Furthermore, the functional effect of HABP1 on proliferation, colony formation, and migration in PDAC cells was examined by knockdown of HABP1. It was revealed that HABP1 was overexpressed in 49 (46.2%) out of 105 patients with PDAC. Overall survival was significantly shorter in patients with high HABP1 expression than in those with low HABP1 expression (median survival time of 12.8 months vs. 28.5 months; log-rank test, P=0.004). Knockdown of HABP1 expression in PDAC cells resulted in decreased cell proliferation, colony formation, and cell migration activity. Thus, HABP1 may serve as a prognostic factor in PDAC and may be of use as a novel therapeutic target.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Norihiro Sato
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takuya Oba
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takao Amaike
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yuzan Kudo
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Shiro Kohi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Keiji Hirata
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|