Dittmann KH, Mayer C, Stephan H, Mieth C, Bonin M, Lechmann B, Rodemann HP. Exposure of primary osteoblasts to combined magnetic and electric fields induced spatiotemporal endochondral ossification characteristic gene- and protein expression profiles.
J Exp Orthop 2022;
9:39. [PMID:
35499653 PMCID:
PMC9061914 DOI:
10.1186/s40634-022-00477-9]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose
Molecular processes in primary osteoblasts were analyzed in response to magnetic and electric field exposure to examine its potential impact on bone healing.
Methods
Primary osteoblasts were exposed to a combination of a magnetic field and an additional electric field (EFMF) (20 Hz, 700 mV, 5 mT, continuous sinusoids) in vitro. mRNA- and protein-expressions were assessed during a time interval of 21 days and compared with expression data obtained from control osteoblasts.
Results
We observed an autonomous osteoblast differentiation process in vitro under the chosen cultivation conditions. The initial proliferative phase was characterized by a constitutively high mRNA expression of extracellular matrix proteins. Concurrent EFMF exposure resulted in significanly increased cell proliferation (fold change: 1.25) and reduced mRNA-expressions of matrix components (0.5–0.75). The following reorganization of the extracellular matrix is prerequisite for matrix mineralization and is characterised by increased Ca2+ deposition (1.44). On molecular level EFMF exposure led to a significant decreased thrombospondin 1 (THBS1) mRNA- (0.81) and protein- (0.54) expression, which in turn reduced the TGFß1-dependent mRNA- (0.68) and protein- (0.5) expression of transforming growth factor beta induced (ßIG-H3) significantly, an inhibitor of endochondral ossification. Consequently, EFMF exposure stimulated the expression of genes characteristic for endochondral ossification, such as collagen type 10, A1 (1.50), osteopontin (1.50) and acellular communication network factor 3 (NOV) (1.45).
Conclusions
In vitro exposure of osteoblasts to EFMF supports cell differentiation and induces gene- and protein-expression patterns characteristic for endochondral ossification during bone fracture healing in vivo.
Supplementary Information
The online version contains supplementary material available at 10.1186/s40634-022-00477-9.
Collapse