1
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
2
|
Thalakiriyawa DS, Dissanayaka WL. Advances in Regenerative Dentistry Approaches: An Update. Int Dent J 2024; 74:25-34. [PMID: 37541918 PMCID: PMC10829373 DOI: 10.1016/j.identj.2023.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/06/2023] Open
Abstract
Regenerative dentistry is a rapidly evolving field in dentistry, which has been driven by advancements in biomedical engineering research and the rising treatment expectations and demands that exceed the scope of conventional approaches. Tissue engineering, the foundation of regenerative dentistry, mainly focuses on 3 key components: stem cells, bioactive molecules, and scaffolds. Dental tissue-derived stem cells are especially significant in this regard due to their remarkable properties. Regenerative techniques have provided novel approaches to many conventional treatment strategies in various disciplines of dentistry. For instance, regenerative endodontic procedures such as pulp revascularisation have provided an alternative approach to conventional root canal treatment. In addition, conventional surgical and nonsurgical periodontal treatment is being taken over by modified approaches of guided tissue regeneration with the aid of 3-dimensional bioprinting and computer-aided design, which has revolutionised oral and maxillofacial tissue engineering. This review presents a concise overview of the latest treatment strategies that have emerged into clinical practice, potential future technologies, and the role of dental tissue-derived stem cells in regenerative dentistry.
Collapse
Affiliation(s)
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Sharma LA, Ramesh N, Sharma A, Ratnayake JTB, Love RM, Alavi SE, Wilson MJ, Dias GJ. In vitro effects of wool-derived keratin on human dental pulp-derived stem cells for endodontic applications. Br J Oral Maxillofac Surg 2023; 61:617-622. [PMID: 37806938 DOI: 10.1016/j.bjoms.2023.08.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 10/10/2023]
Abstract
In this study we examine the influence of wool-derived keratin intermediate filament proteins (kIFPs) on human dental pulp-derived stem cells (hDPSCs). kIFPs were diluted (10 mg/mL to 0.001 mg/mL) in cell culture media. Effects on hDPSCs proliferation were measured using Alamar blue assay. Keratin concentrations of 1 mg/mL and 0.1 mg/mL were tested for odontogenic differentiation and mineralisation. Alkaline phosphatase (ALP) quantification (7th, 14th, and 21st days), alizarin red S (AR-S) staining and calcium quantification (21st day), reverse transcription polymerase chain reaction (RT-PCR, collagen expression), and immunocytochemical staining for dentin matrix protein (DMP) were performed. hDPSCs showed higher proliferation with kIFPs of 0.1 mg/mL or less (p < 0.0001). The 0.1 mg/mL keratin concentration promoted odontogenic differentiation, confirmed by increased ALP activity, significant calcium deposits (AR-S staining, p < 0.05), up-regulated collagen expression (RT-PCR, p < 0.05), and positive DMP staining. These results suggest that kIFPs could be a potential biomaterial for pulp-dentin regeneration.
Collapse
Affiliation(s)
- Lavanya Ajay Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia.
| | - Niranjan Ramesh
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ajay Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Jithendra T B Ratnayake
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Robert M Love
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia.
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - George J Dias
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
5
|
Yu W, Gu Q, Wu D, Zhang W, Li G, Lin L, Lowe JM, Hu S, Li TW, Zhou Z, Miao MZ, Gong Y, Zhao Y, Lu E. Identification of potentially functional circRNAs and prediction of circRNA-miRNA-mRNA regulatory network in periodontitis: Bridging the gap between bioinformatics and clinical needs. J Periodontal Res 2022; 57:594-614. [PMID: 35388494 PMCID: PMC9325354 DOI: 10.1111/jre.12989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Background and Objective Periodontitis is a multifactorial chronic inflammatory disease that can lead to the irreversible destruction of dental support tissues. As an epigenetic factor, the expression of circRNA is tissue‐dependent and disease‐dependent. This study aimed to identify novel periodontitis‐associated circRNAs and predict relevant circRNA‐periodontitis regulatory network by using recently developed bioinformatic tools and integrating sequencing profiling with clinical information for getting a better and more thorough image of periodontitis pathogenesis, from gene to clinic. Material and Methods High‐throughput sequencing and RT‐qPCR were conducted to identify differentially expressed circRNAs in gingival tissues from periodontitis patients. The relationship between upregulated circRNAs expression and probing depth (PD) was performed using Spearman's correlation analysis. Bioinformatic analyses including GO analysis, circRNA‐disease association prediction, and circRNA‐miRNA‐mRNA network prediction were performed to clarify potential regulatory functions of identified circRNAs in periodontitis. A receiver‐operating characteristic (ROC) curve was established to assess the diagnostic significance of identified circRNAs. Results High‐throughput sequencing identified 70 differentially expressed circRNAs (68 upregulated and 2 downregulated circRNAs) in human periodontitis (fold change >2.0 and p < .05). The top five upregulated circRNAs were validated by RT‐qPCR that had strong associations with multiple human diseases, including periodontitis. The upregulation of circRNAs were positively correlated with PD (R = .40–.69, p < .05, moderate). A circRNA‐miRNA‐mRNA network with the top five upregulated circRNAs, differentially expressed mRNAs, and overlapped predicted miRNAs indicated potential roles of circRNAs in immune response, cell apoptosis, migration, adhesion, and reaction to oxidative stress. The ROC curve showed that circRNAs had potential value in periodontitis diagnosis (AUC = 0.7321–0.8667, p < .05). Conclusion CircRNA‐disease associations were predicted by online bioinformatic tools. Positive correlation between upregulated circRNAs, circPTP4A2, chr22:23101560‐23135351+, circARHGEF28, circBARD1 and circRASA2, and PD suggested function of circRNAs in periodontitis. Network prediction further focused on downstream targets regulated by circRNAs during periodontitis pathogenesis.
Collapse
Affiliation(s)
- Weijun Yu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Gu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Department of Immunology, Bio Sorbonne Paris Cité, University of Paris, Paris, France
| | - Di Wu
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA.,Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Weiqi Zhang
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Li
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Lu Lin
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jared M Lowe
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shucheng Hu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tia Wenjun Li
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA.,Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Z Miao
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Yuhua Gong
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Zhao
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031662. [PMID: 35163584 PMCID: PMC8836082 DOI: 10.3390/ijms23031662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).
Collapse
|
7
|
Gradišnik L, Bošnjak R, Bunc G, Ravnik J, Maver T, Velnar T. Neurosurgical Approaches to Brain Tissue Harvesting for the Establishment of Cell Cultures in Neural Experimental Cell Models. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6857. [PMID: 34832259 PMCID: PMC8624371 DOI: 10.3390/ma14226857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022]
Abstract
In recent decades, cell biology has made rapid progress. Cell isolation and cultivation techniques, supported by modern laboratory procedures and experimental capabilities, provide a wide range of opportunities for in vitro research to study physiological and pathophysiological processes in health and disease. They can also be used very efficiently for the analysis of biomaterials. Before a new biomaterial is ready for implantation into tissues and widespread use in clinical practice, it must be extensively tested. Experimental cell models, which are a suitable testing ground and the first line of empirical exploration of new biomaterials, must contain suitable cells that form the basis of biomaterial testing. To isolate a stable and suitable cell culture, many steps are required. The first and one of the most important steps is the collection of donor tissue, usually during a surgical procedure. Thus, the collection is the foundation for the success of cell isolation. This article explains the sources and neurosurgical procedures for obtaining brain tissue samples for cell isolation techniques, which are essential for biomaterial testing procedures.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Alma Mater Europaea ECM, Slovenska 17, 2000 Maribor, Slovenia
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| | - Gorazd Bunc
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (G.B.); (J.R.)
| | - Janez Ravnik
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (G.B.); (J.R.)
| | - Tina Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Velnar
- Alma Mater Europaea ECM, Slovenska 17, 2000 Maribor, Slovenia
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|