1
|
Bo S, You Y, Wang Y, Zhang Y, Bai B, Jiang T, Gao Y. Identification of signatures associated with microsatellite instability and immune characteristics to predict the prognostic risk of colon cancer. Open Med (Wars) 2024; 19:20241056. [PMID: 39726813 PMCID: PMC11669901 DOI: 10.1515/med-2024-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background Microsatellite instability (MSI) significantly impacts treatment response and outcomes in colon cancer; however, its underlying molecular mechanisms remain unclear. This study aimed to identify prognostic biomarkers by comparing MSI and microsatellite stability (MSS). Methods Data from the GSE39582 dataset downloaded from the Gene Expression Omnibus database were analyzed for differentially expressed genes (DEGs) and immune cell infiltration between MSI and MSS. Then, weighted gene co-expression network analysis (WGCNA) was utilized to identify the key modules, and the modules related to immune infiltration phenotypes were considered as the immune-related gene modules, followed by enrichment analysis of immune-related module genes. Prognostic signatures were derived using Cox regression, and their correlation with immune features and clinical features was assessed, followed by a nomogram construction. Results A total of 857 DEGs and 14 differential immune cell infiltration between MSI and MSS were obtained. Then, WGCNA identified two immune-related modules comprising 356 genes, namely MEturquoise and MEbrown. Eight signature genes were identified, namely PLK2, VSIG4, LY75, GZMB, GAS1, LIPG, ANG, and AMACR, followed by prognostic model construction. Both training and validation cohorts revealed that these eight signature genes have prognostic value, and the prognostic model showed superior predictive performance for colon cancer prognosis and distinguished the clinical characteristics of colon cancer patients. Notably, VSIG4 among the signature genes correlated significantly with immune infiltration, human leukocyte antigen expression, and immune pathway enrichment. Finally, the constructed nomogram model could significantly predict the prognosis of colorectal cancer. Conclusion This study identifies eight prognostic signature genes associated with MSI and immune infiltration in colon cancer, suggesting their potential for predicting prognostic risk.
Collapse
Affiliation(s)
- Sihan Bo
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yong You
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yan Zhang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Bing Bai
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Tao Jiang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| |
Collapse
|
2
|
Liu M, Bai R, Zhang G, Liu X, Wang Z, He K, Gan X, Zhou X, Yin P, Zheng Y, Wang G. RARRES1 identified by comprehensive bioinformatic analysis and experimental validation as a promising biomarker in Skin Cutaneous Melanoma. Sci Rep 2024; 14:14113. [PMID: 38898266 PMCID: PMC11187141 DOI: 10.1038/s41598-024-65032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Skin cutaneous melanoma (SKCM) is a highly malignant form of skin cancer, known for its unfavorable prognosis and elevated mortality rate. RARRES1, a gene responsive to retinoic acid receptors, displays varied functions in various cancer types. However, the specific role and underlying mechanisms of RARRES1 in SKCM are still unclear. GSE15605 was utilized to analyze the expression of RARRES1 in SKCM. Subsequently, the TCGA and GEO databases were employed to investigate the relationships between RARRES1 and clinicopathological parameters, as well as the prognostic implications and diagnostic efficacy of RARRES1 in SKCM. GO, KEGG, and GSEA analyses were conducted to explore the potential functions of RARRES1. Furthermore, the associations between RARRES1 and immune infiltration were examined. Genomic alterations and promoter methylation levels of RARRES1 in SKCM were assessed using cBioPortal, UALCAN, and the GEO database. Finally, RARRES1 expression in SKCM was validated through immunohistochemistry, and its functional role in SKCM progression was elucidated via in vivo and in vitro experiments. We found that RARRES1 was downregulated in SKCM compared with normal tissues, and this low expression was associated with worse clinicopathological features and poor prognosis of SKCM. The diagnostic efficacy of RARRES1, as determined by ROC analysis, was 0.732. Through GO, KEGG, and GSEA enrichment analysis, we identified 30 correlated genes and pathways that were mainly enriched in the tumor immune microenvironment, proliferation, apoptosis, and autophagy. Additionally, RARRES1 expression was found to be positively related to the infiltration of various immune cells in SKCM, particularly macrophages and T helper cells, among others. Analysis of genomic alterations and promoter methylation revealed that shallow deletion and hypermethylation of the RARRES1 promoter could lead to reduced RARRES1 expression. IHC validation confirmed the downregulation of RARRES1 in SKCM. Moreover, overexpression of RARRES1 inhibited the proliferation and migration of A375 cells, promoted apoptosis, and inhibited autophagic flux. In the mouse xenograft model, RARRES1 overexpression also suppressed SKCM tumor growth. Collectively, these findings suggest that RARRES1 may function as a suppressor and could potentially serve as a prognostic biomarker and therapeutic target for SKCM.
Collapse
Affiliation(s)
- Meng Liu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ruimin Bai
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Guanfei Zhang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyi Liu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ziyang Wang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ke He
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xinyi Gan
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xiaolin Zhou
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Pan Yin
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zheng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| | - Guorong Wang
- Department of General Surgery, ShaanXi Provincial People's Hospital, Xi'an, 710004, China.
| |
Collapse
|
3
|
Geng X, Chi K, Liu C, Fu Z, Wang X, Meng L, Wang H, Cai G, Chen X, Hong Q. Interaction of RARRES1 with ICAM1 modulates macrophages to suppress the progression of kidney renal clear cell carcinoma. Front Immunol 2022; 13:982045. [PMID: 36353618 PMCID: PMC9638079 DOI: 10.3389/fimmu.2022.982045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Background RARRES1 is a tumor suppressor protein, and its expression is suppressed in various tumor cells. However, whether it participates in the immune response in kidney renal clear cell carcinoma (KIRC) is unknown, and the defined mechanism is not clear. Therefore, the mechanism of RARRES1 in KIRC is worthy of investigation. Methods We analysed the expression and function of RARRES1 with The Cancer Genome Atlas (TCGA) database. The Kaplan–Meier curve was adopted to estimate survival. RARRES1-correlated genes were obtained from the UALCAN database and subjected to Gene Ontology (GO) enrichment and protein–protein interaction (PPI) network analyses. The correlation analysis between tumor-infiltrating immune cells and selected genes were performed with TIMER database. We also investigated the possible function of RARRES1 in KIRC by coculturing Caki-1 cells with THP-1 cells. Immunofluorescence assay was performed to study the RARRES1 expression in difference grade KIRC tissues. Results The expression of RARRES1 was negatively correlated with survival in KIRC patients. The GO biological process term most significantly enriched with the RARRES1-correlated genes was regulation of cell adhesion. ICAM1, which exhibited a relatively highest correlation with RARRES1, is positively correlated with the infiltration level of macrophages. RARRES1 could enhance the expression of ICAM1 in Caki-1 cells and then induce the activation of M1 THP-1 cells to decrease the viability and induce the apoptosis of Caki-1 cells. Conclusion RARRES1 plays an antitumor role by promoting ICAM1 expression and inducing the activation of M1 macrophages. We offer insights into the molecular mechanism of KIRC and reveal a potential therapeutic target.
Collapse
Affiliation(s)
- Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Beidaihe Rehabilitation and Recuperation Center, Chinese People’s Liberation Army Joint Logistics Support Force, Qinhuangdao, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Liangliang Meng
- Department of Radiology, First Medical Centre of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Hanfeng Wang
- Department of Urology, Third Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- *Correspondence: Quan Hong,
| |
Collapse
|
4
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|