1
|
Anna S, Agnieszka M, Olga N, Marta O, Maciej K, Blazej M, Adashi YE. Turner syndrome: the promise of fertility via stem cell technology. Hormones (Athens) 2025:10.1007/s42000-025-00647-1. [PMID: 40169532 DOI: 10.1007/s42000-025-00647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
Turner syndrome (TS) is the most common female sex chromosome disorder, occurring in one out of every 2500 to 3000 live female births. It is caused by the partial or complete loss of one X chromosome. TS is associated with certain physical and medical features, including short stature, estrogen deficiency, delayed puberty, hypothyroidism, and congenital heart defects. The majority of women with TS are infertile as a result of gonadal dysgenesis and primary ovarian insufficiency causing hypergonadotropic hypogonadism. Several reproductive options are available for TS patients. The recent use of stem cells (SCs) was found to constitute a promising new alternative in cases of infertility treatment in this group. SCs are undifferentiated cells that exist in embryos, fetuses, and adults and that produce differentiated cells. They can be used in infertility treatment for ovarian regeneration and oocyte generation. However, additional studies scrutinizing their efficiency and safety are needed. In our review, we present reproductive options that are currently available for women with TS.
Collapse
Affiliation(s)
- Szeliga Anna
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Malcher Agnieszka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Niwczyk Olga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Olszewska Marta
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Kurpisz Maciej
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | - Meczekalski Blazej
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Y Eli Adashi
- Department of Medical Science, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Forouzandegan M, Sadeghmousavi S, Heidari A, Khaboushan AS, Kajbafzadeh AM, Zolbin MM. Harnessing the potential of tissue engineering to target male infertility: Insights into testicular regeneration. Tissue Cell 2025; 93:102658. [PMID: 39689384 DOI: 10.1016/j.tice.2024.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Male infertility is among one of the most challenging health concerns in the world. Traditional therapeutic interventions such as semen and testicular tissue cryopreservation aim to restore or preserve male fertility. However, these methods are subject to limitations that impact their efficacy and are infeasible in cases such as patients who cannot produce mature sperm due to genetic or pathological disorders. Moreover, with the number of cases of prepubertal boys who must undergo gonadotoxic treatments rising, alternatives have been sought for fertility preservation to enhance reproductive rates in vitro and in vivo. Tissue engineering is a promising area that can address aspects that current therapies may not fully encompass through the creation of bioartificial testicular structures or 3D culture systems that allow the establishment of the essential conditions for sperm production. This study aims to first give a brief overview of stem cell therapy in treating male infertility and then go more in-depth regarding the novel methods and procedures based on tissue engineering that have the potential to offer new treatments for infertility caused by testicular disorders and defects.
Collapse
Affiliation(s)
- Moojan Forouzandegan
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Heidari
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ghahremani-Nasab M, Babaie S, Bazdar S, Paiva-Santos AC, Del Bakhshayesh MR, Akbari-Gharalari N, Fathi-Karkan S, Ghasemi D, Del Bakhshayesh AR. Infertility treatment using polysaccharides-based hydrogels: new strategies in tissue engineering and regenerative medicine. J Nanobiotechnology 2025; 23:162. [PMID: 40033394 DOI: 10.1186/s12951-025-03267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025] Open
Abstract
Infertility is a primary health issue affecting about 15% of couples of reproductive ages worldwide, leading to physical, mental, and social challenges. Advances in nanobiotechnology and regenerative medicine are opening new therapeutic horizons for infertility by developing polysaccharide-based nanostructured biomaterials. This review explores the role of tissue engineering and regenerative medicine in infertility treatment, explicitly focusing on the promising potential of polysaccharide-based hydrogels. In this context, using these biomaterials offers unique advantages, including biodegradability, biocompatibility, and the ability to mimic the natural endometrial microenvironment, making them highly effective for applications in endometrial regeneration, ovarian tissue engineering, spermatogenesis support, and controlled drug delivery. This review discusses the various properties and uses of polysaccharide-based hydrogels, like alginate, hyaluronic acid, and chitosan, in helping to restore reproductive function. While these materials hold great promise, some notable challenges to their clinical use include issues like rapid degradation, mechanical instability, and potential immune reactions. Future research should focus on developing hybrid hydrogels, investigating advanced fabrication techniques, and testing these materials in clinical settings. By combining findings from recent studies, this review aims to provide a solid foundation for researchers and clinicians looking to discover new and effective strategies for treating infertility, ultimately connecting research efforts with practical applications in healthcare.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Bazdar
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, LAQV, REQUIMTE, University of Coimbra, Coimbra, Portugal
| | | | - Naeimeh Akbari-Gharalari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia,, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Diba Ghasemi
- Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Yang J. Insight into the potential of algorithms using AI technology as in vitro diagnostics utilizing microbial extracellular vesicles. Mol Cell Probes 2024; 78:101992. [PMID: 39580006 DOI: 10.1016/j.mcp.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Recently, the microbiome has been gaining significant attention in the healthcare sector as a next-generation factor. However, there remains a substantial gap in our understanding of the fundamental mechanisms of microbes, particularly regarding the effector microbial products exchanged between the microbiota and the host. Consequently, research on microbial extracellular vesicles (MEVs) has increased. MEVs, which are nano-sized, can circulate throughout the body and penetrate the bloodstream, carrying diverse information. Consequently, they are increasingly being utilized in medical applications. Additionally, AI technologies are being utilized in medicine. The combination of MEVs and AI technology is being explored for the development of algorithm-based in vitro diagnostics (IVD). Therefore, this study aims to review the integration of MEVs and AI technology as diagnostic tools for personalized medicine. This paper reviewed the MEV-based algorithms developed by a variety of human samples and AI technology. Additionally, most of MEV-based diagnostic models showed higher clinical performance. Several important factors are crucial for accurate diagnosis. First, optimizing sample types according to specific diseases is essential. Second, AI technology with higher diagnostic power yields more accurate results. Finally, incorporating additional markers can enhance diagnostic power. However, applying this tool in situ faces several limitations, including method standardization, sample size, and analysis techniques. In the future, we anticipate that research on MEVs will advance our understanding of their role in disease and establish the foundation for precision medicine strategies.
Collapse
Affiliation(s)
- Jinho Yang
- Department of Occupational Health and Safety, Semyung University, Jecheon, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
5
|
Bharti S, Kumar A. Synergies in stem cell research: Integrating technologies, strategies, and bionanomaterial innovations. Acta Histochem 2024; 126:152119. [PMID: 38041895 DOI: 10.1016/j.acthis.2023.152119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
Since the 1960 s, there has been a substantial amount of research directed towards investigating the biology of several types of stem cells, including embryonic stem cells, brain cells, and mesenchymal stem cells. In contemporary times, a wide array of stem cells has been utilized to treat several disorders, including bone marrow transplantation. In recent years, stem cell treatment has developed as a very promising and advanced field of scientific research. The progress of therapeutic methodologies has resulted in significant amounts of anticipation and expectation. Recently, there has been a notable proliferation of experimental methodologies aimed at isolating and developing stem cells, which have emerged concurrently. Stem cells possess significant vitality and exhibit vigorous proliferation, making them suitable candidates for in vitro modification. This article examines the progress made in stem cell isolation and explores several methodologies employed to promote the differentiation of stem cells. This study also explores the method of isolating bio-nanomaterials and discusses their viewpoint in the context of stem cell research. It also covers the potential for investigating stem cell applications in bioprinting and the usage of bionanomaterial in stem cell-related technologies and research. In conclusion, the review article concludes by highlighting the importance of incorporating state-of-the-art methods and technological breakthroughs into the future of stem cell research. Putting such an emphasis on constant innovation highlights the ever-changing character of science and the never-ending drive toward unlocking the maximum therapeutic potential of stem cells. This review would be a useful resource for researchers, clinicians, and policymakers in the stem cell research area, guiding the next steps in this fast-developing scientific concern.
Collapse
Affiliation(s)
- Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India.
| |
Collapse
|
6
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
7
|
Shabbir S, Khurram E, Moorthi VS, Eissa YTH, Kamal MA, Butler AE. The interplay between androgens and the immune response in polycystic ovary syndrome. J Transl Med 2023; 21:259. [PMID: 37062827 PMCID: PMC10105935 DOI: 10.1186/s12967-023-04116-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic-reproductive-endocrine disorder that, while having a genetic component, is known to have a complex multifactorial etiology. As PCOS is a diagnosis of exclusion, standardized criteria have been developed for its diagnosis. The general consensus is that hyperandrogenism is the primary feature of PCOS and is associated with an array of physiological dysfunctions; excess androgens, for example, have been correlated with cytokine hypersecretion, adipocyte proliferation, and signaling pathway dysregulation. Another key feature of PCOS is insulin resistance, resulting in aberrant glucose and fatty acid metabolism. Additionally, the immune system plays a key role in PCOS. Hyperandrogenism stimulates some immune cells while it inhibits others, thereby disrupting the normal balance of immune cells and creating a state of chronic inflammation. This low-grade inflammation could contribute to infertility since it induces ovarian dysfunction. This dysregulated immune response in PCOS exhibits autoimmunity characteristics that require further investigation. This review paper examines the relationship between androgens and the immune response and how their malfunction contributes to PCOS.
Collapse
Affiliation(s)
- Sania Shabbir
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Emaan Khurram
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | | | | | - Mohammad Azhar Kamal
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
- Department of Pharmaceutics, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | |
Collapse
|
8
|
Zivari-Ghader T, Dolati S, Mehdizadeh A, Davaran S, Rashidi MR, Yousefi M. Recent scaffold-based tissue engineering approaches in premature ovarian failure treatment. J Tissue Eng Regen Med 2022; 16:605-620. [PMID: 35511799 DOI: 10.1002/term.3306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022]
Abstract
Recently, tissue engineering and regenerative medicine have received significant attention with outstanding advances. The main scope of this technology is to recover the damaged tissues and organs or to maintain and improve their function. One of the essential fields in tissue engineering is scaffold designing and construction, playing an integral role in damaged tissues reconstruction and repair. However, premature ovarian failure (POF) is a disorder causing many medical and psychological problems in women. POF treatment using tissue engineering and various scaffold has recently made tremendous and promising progress. Due to the importance of the subject, we have summarized the recently examined scaffolds in the treatment of POF in this review.
Collapse
Affiliation(s)
- Tayyebeh Zivari-Ghader
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Liu M, Li W, Zhou X, Zhou M, Zhang W, Liu Q, Zhang A, Xu B. Cell-Free Fat Extract Improves Ovarian Function and Fertility in Mice With Advanced Age. Front Endocrinol (Lausanne) 2022; 13:912648. [PMID: 35784529 PMCID: PMC9243446 DOI: 10.3389/fendo.2022.912648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
The reduction in the quantity and quality of oocytes is the major factor affecting fertility in women with advanced age, who tend to experience delayed childbearing and declined fertility rate. However, effective therapeutic strategies to combat this decrease in ovarian function are lacking in clinical practice. Thus, identifying a new method to rescue ovarian function and improve reproduction in natural age-related decline in fertility is necessary. Cell-free fat extract (CEFFE) has been verified to possess diverse active proteins exerting anti-aging and proliferation-promoting effects. Nonetheless, whether CEFFE can rescue the decline in aged-related ovarian function and improve the fertility of females with advanced age remains unclear. In this study, a natural aging mouse model, exhibiting similarities to the physiological changes of ovarian senescence, was used to observe the anti-aging effect of CEFFE on ovarian functions. We found that CEFFE, injected via the veins, could recover the levels of the sex hormone, increase angiogenesis and the number of growth follicles in the natural aging mice model. Moreover, CEFFE promoted the development of embryos and increased the litter size of aged mice. Transcriptome analysis of the aged mouse ovaries revealed that CEFFE treatment upregulated the expression of genes involved in the repair of DNA damage. And both in vivo and in vitro experiment proved that CEFFE improved the function of granulosa cells, including promoting proliferation, alleviating senescence, and rescuing DNA damage in aged granulosa cells. Collectively, our study implied that CEFFE improved the ovarian function and fertility of naturally aging mice by ameliorating the overall microenvironment of ovary, which provided a theoretical basis for new anti-aging therapeutic strategies for cell-free therapy in ovaries.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhu Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Liu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Bufang Xu, ; Aijun Zhang, ; Qiang Liu,
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bufang Xu, ; Aijun Zhang, ; Qiang Liu,
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Bufang Xu, ; Aijun Zhang, ; Qiang Liu,
| |
Collapse
|