1
|
Ghimire P, Joh RI. Modeling the Copy Number of HSATII Repeats in Human Pericentromere. Int J Mol Sci 2025; 26:4751. [PMID: 40429892 PMCID: PMC12112567 DOI: 10.3390/ijms26104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Tandemly repeated DNA fragments are major components of centromeres and pericentromeric heterochromatin, which is responsible for chromosomal stability and segregation. Recent evidence suggests that transcripts from these repeats play a key role in heterochromatin maintenance, and these repeats can be highly dynamic with various copy numbers. Here, we developed a mathematical model for human satellite repeats, which tracks the silenced and desilenced repeats, lncRNA, and copy number. Our model shows that chromatin factors for silencing and RNA stability can facilitate copy gain in satellites. Also, the system can be bistable, and cells with different copy numbers, silenced repeats with a small copy number, and desilenced repeats with a large copy number may coexist. To incorporate the cooperative methylation by neighboring repeats and the local chromatin environment, we also developed a spatial model where the local chromatin environment facilitates methylation locally. This model suggests that a local domain of silenced repeats may be an important feature of copy number regulation. Our models suggest that pericentromeric repeats are highly dynamic, and small changes in chromatin regulation can lead to large changes in satellite copy numbers.
Collapse
Affiliation(s)
- Puranjan Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Richard I. Joh
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23220, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
2
|
Fonseca-Carvalho M, Veríssimo G, Lopes M, Ferreira D, Louzada S, Chaves R. Answering the Cell Stress Call: Satellite Non-Coding Transcription as a Response Mechanism. Biomolecules 2024; 14:124. [PMID: 38254724 PMCID: PMC10813801 DOI: 10.3390/biom14010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Organisms are often subjected to conditions that promote cellular stress. Cell responses to stress include the activation of pathways to defend against and recover from the stress, or the initiation of programmed cell death to eliminate the damaged cells. One of the processes that can be triggered under stress is the transcription and variation in the number of copies of satellite DNA sequences (satDNA), which are involved in response mechanisms. Satellite DNAs are highly repetitive tandem sequences, mainly located in the centromeric and pericentromeric regions of eukaryotic chromosomes, where they form the constitutive heterochromatin. Satellite non-coding RNAs (satncRNAs) are important regulators of cell processes, and their deregulation has been associated with disease. Also, these transcripts have been associated with stress-response mechanisms in varied eukaryotic species. This review intends to explore the role of satncRNAs when cells are subjected to adverse conditions. Studying satDNA transcription under various stress conditions and deepening our understanding of where and how these sequences are involved could be a key factor in uncovering important facts about the functions of these sequences.
Collapse
Affiliation(s)
- Marisa Fonseca-Carvalho
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Mariana Lopes
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Lopes M, Louzada S, Ferreira D, Veríssimo G, Eleutério D, Gama-Carvalho M, Chaves R. Human Satellite 1A analysis provides evidence of pericentromeric transcription. BMC Biol 2023; 21:28. [PMID: 36755311 PMCID: PMC9909926 DOI: 10.1186/s12915-023-01521-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Collapse
Affiliation(s)
- Mariana Lopes
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniel Eleutério
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal. .,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
4
|
Chromosomal Heteromorphisms and Cancer Susceptibility Revisited. Cells 2022; 11:cells11203239. [PMID: 36291106 PMCID: PMC9600968 DOI: 10.3390/cells11203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomal heteromorphisms (CHs) are a part of genetic variation in man. The past literature largely posited whether CHs could be correlated with the development of malignancies. While this possibility seemed closed by end of the 1990s, recent data have raised the question again on the potential influences of repetitive DNA elements, the main components of CHs, in cancer susceptibility. Such new evidence for a potential role of CHs in cancer can be found in the following observations: (i) amplification and/or epigenetic alterations of CHs are routinely reported in tumors; (ii) the expression of CH-derived RNA in embryonal and other cells under stress, including cancer cells; (iii) the expression of parts of CH-DNA as long noncoding RNAs; plus (iv) theories that suggest a possible application of the “two-hit model” for euchromatic copy number variants (CNVs). Herein, these points are discussed in detail, which leads to the conclusion that CHs are by far not given sufficient consideration in routine cytogenetic analysis, e.g., leukemias and lymphomas, and need more attention in future research settings including solid tumors. This heightened focus may only be achieved by approaches other than standard sequencing or chromosomal microarrays, as these techniques are at a minimum impaired in their ability to detect, if not blind to, (highly) repetitive DNA sequences.
Collapse
|