1
|
Heidarzadehpilehrood R, Pirhoushiaran M, Osman MB, Ling KH, Hamid HA. Identifying Genetic Profiles in Peripheral Blood Mononuclear Cells in Women with Polycystic Ovary Syndrome: An Observational Case-Control Study. Arch Med Res 2025; 56:103129. [PMID: 39647252 DOI: 10.1016/j.arcmed.2024.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine and reproductive condition affecting women of reproductive age, although its expression profiles and molecular pathways are not fully understood. AIMS To identify the transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in women with PCOS and controls. To investigate noninvasive diagnostic biomarkers and potential treatment targets to improve women's fertility. METHODS RNA sequencing (RNA-Seq) was conducted on PBMC samples from six patients with PCOS and six healthy controls. qRT-PCR validation was carried out in 68 subjects. Multivariate logistic regression was performed to assess the combined impact of biomarkers. RESULTS A total of 186 differentially expressed genes (DEG) were found between patients and controls (log2FC >1, p <0.05). Enrichment analysis revealed cytokine-mediated signaling pathways, cytokine activity, and cytokine-cytokine receptor interaction. RNA sequencing showed consistency with qRT-PCR. Women with PCOS had significantly higher levels of AQP9 (p <0.001), PROK2 (p = 0.001), and S100A12 (p <0.001) expression compared to controls. AQP9 (AUC = 0.77), PROK2 (AUC = 0.71), and S100A12 (AUC = 0.82) adequately discriminated women with PCOS from healthy controls. In addition, multiple logistic regression on biomarkers resulted in a significant diagnostic power with an AUC = 0.89, 95% CI: 0.81-0.97, p <0.0001. Further associations were analyzed between relative gene expression and clinical, anthropometric, hormonal, and ultrasonographic data. CONCLUSIONS Dysregulated RNA expression in PBMCs may contribute to an increased risk of PCOS and serve as a potential diagnostic biomarker. The involvement of inflammatory and cytokine-related pathways supports the notion that PCOS is a chronic inflammatory condition.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Malaysian Research Institution on Ageing, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Wang YH, Wu HY, Xin C, Zhang KX, Zhang JW, Zhi HW. Identification and Validation of Biomarkers for Alzheimer's Disease Based on Akt and Wnt Signaling Pathways in Mouse Models. Mol Neurobiol 2025:10.1007/s12035-025-04785-w. [PMID: 39992588 DOI: 10.1007/s12035-025-04785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that remains challenging to treat. Akt and Wnt play a role in complex cellular signaling, which is crucial for examining the onset of AD. In this study, we aimed to identify and analyze Akt pathway-related genes (ARGs) and Wnt pathway-related genes (WRGs) as AD biomarkers, determine the effects of ARGs and WRGs on AD, and verify these effects in AD mouse models. We searched for differentially expressed genes in the Gene Expression Omnibus database, constructed candidate gene protein-protein interaction networks, and used least absolute shrinkage and selection operator regression analysis and the support vector machine-recursive feature elimination algorithm to screen key genes. Correlation and functional similarity analyses of key genes, immune infiltration analysis, competing endogenous RNA network construction, and drug prediction of key genes were performed. Expression of key genes in streptozotocin-treated (STZ)-treated AD mice was validated using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Bioinformatics analysis identified five key genes in AD: PRKACA, CDH3, ATP6V0C, DLL1, and CELSR2. Step-down tests, immunohistochemistry, and silver plate staining confirmed successful treatment of STZ-induced AD in mice. According to RT-qPCR analysis, the relative expression of DLL1 mRNA in AD mice was higher than that in control mice, whereas the relative expression of ATP6V0C and PRKACA mRNA in AD mice was lower than that in control mice; this was consistent with the results of bioinformatics analysis (p < 0.05). This study screened and validated AD biomarkers associated with the Akt and Wnt pathways in mouse models.
Collapse
Affiliation(s)
- Ya-Han Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Hong-Yun Wu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Chao Xin
- Shandong Academy of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Kai-Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ji-Wei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Hong-Wei Zhi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China.
| |
Collapse
|
3
|
Zhen XJ, Hu RT, Liu NN, Dou JF, Wu T, Zhang YL, Zhang CY, Ma L, Jiang GJ. CircRNA-mediated ceRNA regulatory networks: transcriptomic insights into obesity type 2 diabetes progression and treatment strategies. Diabetol Metab Syndr 2025; 17:57. [PMID: 39953543 PMCID: PMC11827376 DOI: 10.1186/s13098-025-01578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/03/2025] [Indexed: 02/17/2025] Open
Abstract
The aim of this study was to deeply explore the pathogenesis of obesity type 2 diabetes mellitus (O-T2DM) and search for potential biomarkers through high-throughput RNA sequencing technology. The study included 15 patients with O-T2DM and 15 healthy controls, and peripheral blood samples were collected for transcriptome analysis. The results showed that compared with the control group, there were 442 circRNAs and 2756 mRNAs with significant differential expression in the O-T2DM group. Through weighted gene co-expression network analysis (WGCNA) and pathway enrichment analysis, it was found that the differentially expressed mRNAs were mainly enriched in signaling pathways such as T cell receptor, cell senescence, cytotoxicity mediated by NK cells, IL-17, lipids and atherosclerosis, and the oxidative phosphorylation pathway was activated, and apoptosis was inhibited. Based on the ceRNA theory, a regulatory network was constructed, and key circRNAs such as hsa_circ_0060614 were screened out, which may regulate the expression of the MT2A gene by adsorbing hsa-mir-4668-3p, and the expression levels of the three were significantly increased in O-T2DM patients. This study provides a new perspective for the research on the molecular mechanism of O-T2DM and an important theoretical basis for the development of personalized treatment and precision medicine for it.
Collapse
Affiliation(s)
- Xian-Jie Zhen
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ren-Tong Hu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533099, China
| | - Nan-Nan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin-Fang Dou
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tao Wu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue-Lin Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chu-Yue Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Li Ma
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Wulumuqi, 830000, China.
| | - Guang-Jian Jiang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Pirhoushiaran M, Heidarzadehpilehrood R, Mokhtarinejad M, Hesami S, Rezaei N, Farahani AS. Upregulated PCAT-1 predicts poor prognosis and reduced immune cell infiltration in head and neck squamous cell carcinoma through the miR-145-5p / FSCN-1 axis. Mol Biol Rep 2025; 52:121. [PMID: 39806246 DOI: 10.1007/s11033-024-10208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND LncRNA PCAT-1 is known to promote cancer proliferation, invasion, and metastasis. However, its significance in HNSCC is not fully understood. This research investigates how the PCAT-1 / miR-145-5p / FSCN-1 axis promote HNSCC. METHODS AND RESULTS We analyzed the gene expression patterns on 238 fresh-frozen samples, comparing tumors with their normal adjacent tissues (NATs). HNSCC samples showed higher PCAT-1 and FSCN-1 expression compared to NATs (p < 0.001 and p < 0.001, respectively). In contrast, miR-145-5p expression was markedly downregulated compared to NATs (p < 0.001). Notably, ROC curve analysis revealed exceptional diagnostic power, with an AUC of 0.83 for PCAT-1, 0.95 for miR-145-5p, and 0.91 for FSCN-1. Pearson correlation analysis unveiled a significant positive correlation between PCAT-1 and FSCN-1 expression levels (r = 0.084, p < 0.001) and negative correlations between FSCN-1 and miR-145-5p (r = -0.710, p < 0.001) as well as between PCAT-1 and miR-145-5p (r = -0.759, p < 0.001). Distinct molecular profiles were observed in the levels of PCAT-1, miR-145-5p, and FSCN-1 between HPV (-) and HPV ( +) 16 and 18 genotypes (p = 0.007, p = 0.027, and p = 0.002). MiR-145-5p expression showed significant differences between HPV (-) and HPV ( +) other genotypes (p = 0.035). FSCN-1 expression showed notable distinctions between HPV ( +) 18 & 16 and HPV ( +) other genotypes (p = 0.031). CONCLUSIONS Elevated levels of lncRNA PCAT-1 promote HNSCC through the miR-145-5p/FSCN-1 axis and are associated with poor prognosis and reduced immune cell infiltration levels.
Collapse
Affiliation(s)
- Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mahnoosh Mokhtarinejad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Sara Hesami
- Medical Genetic Ward, Faculty of Medicine, Imam Khomeini Hospital Complex, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Abbas Shakoori Farahani
- Medical Genetic Ward, Faculty of Medicine, Imam Khomeini Hospital Complex, IKHC, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
6
|
Chen Y, Wu WJ, Xing LW, Zhang XJ, Wang J, Xia XY, Zhao R, Zhao R. Investigating the role of mitochondrial DNA D-loop variants, haplotypes, and copy number in polycystic ovary syndrome: implications for clinical phenotypes in the Chinese population. Front Endocrinol (Lausanne) 2023; 14:1206995. [PMID: 37745710 PMCID: PMC10512090 DOI: 10.3389/fendo.2023.1206995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Background The presence of genetic variations in mitochondrial DNA (mtDNA) has been associated with a diverse array of diseases. The objective of this study was to examine the correlations between mtDNA D-loop, its haplotypes, and polycystic ovary syndrome (PCOS) in the Chinese population, and the associations between mtDNA D-loop and symptoms of PCOS. The study also sought to determine whether the mtDNA copy number in Chinese patients with PCOS differed from that of individuals in the control group. Methods Infertile individuals who only had tubal or male factor treatment were the focus of research by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). mtDNA haplotypes were categorized using polymorphic D-loop sites. mtDNA D-loop, PCOS features, and mtDNA haplotypes were analyzed using R software to determine the strength of the association between the three. There are certain DNA haplotypes linked to PCOS. Microdroplet digital polymerase chain reaction (PCR) was used to determine the mtDNA copy number in a convenience sample of 168 PCOS patients and 83 controls. Results Among the research group, the majority of D-loop mutations were infrequent (frequency< 1%), with only 45 variants displaying a minimum allele frequency (MAF) of 5% or higher. No association was found between polymorphism loci in PCOS patients and body mass index (BMI). Noteworthy, C194T, 1A200G, 523delAC, and C16234T showed positive correlations with elevated LH/FSH levels. Additionally, specific polymorphic loci G207A, 16036GGins, and 16049Gins within the D-loop region of mtDNA potentially exerted a protective role in PCOS development. Conversely, no statistical significance was observed in the expression levels of C16291T and T489C. Chinese women with mtDNA haplotype A15 exhibited a decreased risk of developing PCOS. Moreover, a significant difference in mtDNA copy number was detected, with controls averaging 25.87 (21.84, 34.81), while PCOS patients had a mean of 129.91 (99.38, 168.63). Conclusion Certain mtDNA D-loop mutations and haplotypes appear to confer protection against PCOS in Chinese women. In addition, elevated mtDNA copy number may serve as an indicator during early stages of PCOS.
Collapse
Affiliation(s)
- Yang Chen
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Wei-jia Wu
- Department of Scientific Research, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Li-wei Xing
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-juan Zhang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Jing Wang
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Xiao-yan Xia
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rui Zhao
- Department of TCM (Traditional Chinese Medicine), Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Rong Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
7
|
Heidarzadehpilehrood R, Pirhoushiaran M, Binti Osman M, Abdul Hamid H, Ling KH. Weighted Gene Co-Expression Network Analysis (WGCNA) Discovered Novel Long Non-Coding RNAs for Polycystic Ovary Syndrome. Biomedicines 2023; 11:biomedicines11020518. [PMID: 36831054 PMCID: PMC9953234 DOI: 10.3390/biomedicines11020518] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) affects reproductive-age women. This condition causes infertility, insulin resistance, obesity, and heart difficulties. The molecular basis and mechanism of PCOS might potentially generate effective treatments. Long non-coding RNAs (lncRNAs) show control over multifactorial disorders' growth and incidence. Numerous studies have emphasized its significance and alterations in PCOS. We used bioinformatic methods to find novel dysregulated lncRNAs in PCOS. To achieve this objective, the gene expression profile of GSE48301, comprising PCOS patients and normal control tissue samples, was evaluated using the R limma package with the following cut-off criterion: p-value < 0.05. Firstly, weighted gene co-expression network analysis (WGCNA) was used to determine the co-expression genes of lncRNAs; subsequently, hub gene identification and pathway enrichment analysis were used. With the defined criteria, nine novel dysregulated lncRNAs were identified. In WGCNA, different colors represent different modules. In the current study, WGCNA resulted in turquoise, gray, blue, and black co-expression modules with dysregulated lncRNAs. The pathway enrichment analysis of these co-expressed modules revealed enrichment in PCOS-associated pathways, including gene expression, signal transduction, metabolism, and apoptosis. In addition, CCT7, EFTUD2, ESR1, JUN, NDUFAB1, CTTNB1, GRB2, and CTNNB1 were identified as hub genes, and some of them have been investigated in PCOS. This study uncovered nine novel PCOS-related lncRNAs. To confirm how these lncRNAs control translational modification in PCOS, functional studies are required.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.H.); (K.-H.L.)
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.H.); (K.-H.L.)
| |
Collapse
|