1
|
Miyashita K, Ninomiya K, Tobe A, Masuda S, Kotoku N, Kageyama S, Revaiah PC, Tsai TY, Wang B, Garg S, Serruys PW, Onuma Y. Long-term outcomes following bioresorbable vascular scaffolds. Expert Rev Cardiovasc Ther 2024; 22:391-407. [PMID: 39049728 DOI: 10.1080/14779072.2024.2375340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The higher scaffold thrombosis rates observed with the first-generation bioresorbable scaffolds (BRSs) compared to conventional drug-eluting stents were likely due in part to bioresorbable polymers having insufficient radial strength, necessitating larger strut profiles. Meta-analysis of the long-term outcomes from the first-generation Absorb bioresorbable vascular scaffold (BVS) showed that this period of excess risk ended at 3 years. Therefore, current attention has been focused on improving early outcomes by increasing the scaffold's tensile strength and reducing strut thickness. AREAS COVERED This review summaries the lessons learned from the first-generation BRS. It updates the long-term clinical outcomes of trials evaluating the ABSORB BVS and metallic alloy-based BRS. In addition, it reviews the next-generation BRSs manufactured in Asia. EXPERT OPINION Critical areas to improve the performance and safety of biodegradable scaffolds include further development in material science, surface modification, delivery systems, and long-term follow-up studies.
Collapse
Affiliation(s)
- Kotaro Miyashita
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Kai Ninomiya
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Akihiro Tobe
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Shinichiro Masuda
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Nozomi Kotoku
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Shigetaka Kageyama
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Pruthvi C Revaiah
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Tsung-Ying Tsai
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Bo Wang
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn, UK
| | - Patrick W Serruys
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| | - Yoshinobu Onuma
- The College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CORRIB Research Centre for Advanced Imaging and Core laboratory, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Yu S, Wang M, Yan M, Wang B, Xu Y. Dynamic changes in inflammatory responses and 3-year clinical outcomes of XINSORB scaffolds in coronary stenting. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024; 61:70-81. [PMID: 37949719 DOI: 10.1016/j.carrev.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Inflammation is known to play a crucial role in the development of coronary atherosclerosis and vascular healing after stenting. This study aimed to investigate the dynamic changes in inflammatory responses between XINSORB and TIVOLI scaffolds and their correlation with 3-year clinical outcomes. METHOD A total of 140 patients in the XINSORB group and 42 patients in the TIVOLI group were included in this prospective, single-center study, conducted in Shanghai tenth People's Hospital. Blood samples were collected at baseline, 24 h, 6 months, and 12 months after stent implantation to measure high sensitivity C-reactive protein (hsCRP), fibrinogen (FBG), white blood cell count (WBC), tumor necrosis factor (TNF), and interleukin-6 (IL-6). Receiver-operating characteristic curves and proportional hazards models were generated to evaluate the relationship between 24-h postoperative inflammatory indicators and 3-year patient-oriented composite endpoints (POCE). RESULT The levels of hsCRP, FBG, WBC, TNF, and IL-6 reached their peak levels 24 h after stenting and then gradually decreased to levels comparable to baseline at 6 and 12 months. During the 3-year follow-up, 11.4 % of the XINSORB cohort and 9.5 % of the TIVOLI cohort experienced POCE (P = 0.948). High levels of hsCRP and IL-6 24 h after the procedure were associated with clinical endpoints, and the combination of these two biomarkers improved the predictive ability of prognosis. CONCLUSIONS There were no significant differences between the changes in the concentration of inflammatory biomarkers after XINSORB stents or drug-eluting stent implantation. Reduction in postoperative inflammatory levels may decrease the occurrence of clinical outcomes. This study provides insights into the dynamic changes of inflammatory responses and their correlation with clinical outcomes, which could have implications for the management of patients undergoing coronary stenting. TRIAL REGISTRATION The study has been registered on the official website of the China Clinical Trial Registry (ChiCTR1800014966).
Collapse
Affiliation(s)
- Shushu Yu
- Department of Cardiology, Putuo District People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingliang Wang
- Department of Cardiology, Putuo District People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyu Yan
- Department of Cardiology, Putuo District People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wang X, Li Y, Fu G, Xu B, Zhou Y, Su X, Liu H, Zhang Z, Yu B, Tao L, Zheng Q, Li L, Xu K, Han Y. Three-year clinical outcomes of the novel sirolimus-eluting bioresorbable scaffold for the treatment of de novo coronary artery disease: A prospective patient-level pooled analysis of NeoVas trials. Catheter Cardiovasc Interv 2023; 101:967-972. [PMID: 36881746 DOI: 10.1002/ccd.30518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/10/2022] [Accepted: 11/20/2022] [Indexed: 03/09/2023]
Abstract
OBJECTIVES We aimed to evaluate the long-term outcomes of the novel NeoVas sirolimus-eluting bioresorbable scaffold (BRS) for the treatment of de novo coronary artery disease. BACKGROUND The long-term safety and efficacy of the novel NeoVas BRS are still needed to be elucidated. METHODS A total of 1103 patients with de novo native coronary lesions for coronary stenting were enrolled. The primary endpoint of target lesion failure (TLF) was defined as a composite of cardiac death (CD), target vessel myocardial infarction (TV-MI), or ischemia-driven-target lesion revascularization (ID-TLR). RESULTS A three-year clinical follow-up period was available for 1,091 (98.9%) patients. The cumulative TLF rate was 7.2% with 0.8% for CD, 2.6% for TV-MI, and 5.1% for ID-TLR. Additionally, 128 (11.8%) patient-oriented composite endpoint and 11 definite/probable stent thromboses (1.0%) were recorded. CONCLUSIONS The extended outcomes of the NeoVas objective performance criterion trial demonstrated a promising 3-year efficacy and safety of the NeoVas BRS in low-risk patients with low complexity in terms of lesions and comorbidities.
Collapse
Affiliation(s)
- Xiaozeng Wang
- General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yang Li
- General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Centre for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xi Su
- Department of Cardiology, Wuhan Asia Heart Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | | | - Zheng Zhang
- Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qun Zheng
- Department of Cardiology, Halison International Peace Hospital, Hengshui, Shijiazhuang, China
| | - Lang Li
- Department of Cardiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Xu
- General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yaling Han
- General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | | |
Collapse
|
4
|
Peng W, Chen Y, Fan H, Chen S, Wang H, Song X. A Novel PLLA/MgF 2 Coating on Mg Alloy by Ultrasonic Atomization Spraying for Controlling Degradation and Improving Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2023; 16:682. [PMID: 36676415 PMCID: PMC9864383 DOI: 10.3390/ma16020682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Problems of rapid degradation and poor biocompatibility (endothelialization and hemocompatibility) limit magnesium (Mg) alloy's further applications in vascular stents. To solve these problems, a novel composite coating was designed on Mg alloy via a two-step method. First, a Mg alloy sample was immersed in hydrofluoric acid. Then, a poly-l-lactic acid (PLLA) coating was made by ultrasonic atomization spraying with 5 and 10 layers (referred to as PLLA(5)-HF-Mg and PLLA(10)-HF-Mg). Characterizations were analyzed from the microstructure, element distribution, and wettability. The degradation behavior was tested with an electrochemical test and immersion test. Endothelialization was investigated using human umbilical vein endothelial cells (HUVECs). Hemocompatibility was examined with a platelet adhesion test. The results showed that the PLLA coating could not only cover the surface, but also could permeate through and cover the holes on the MgF2 layer, mechanically locked with the substrate. Thus, the composite coating had higher corrosion resistance. The PLLA/MgF2 coating, especially on PLLA(10)-HF-Mg, enhanced HUVECs' viability and growth. While incubated with platelets, the PLLA/MgF2 coating, especially on PLLA(10)-HF-Mg, had the lowest platelet adhesion number and activity. Taken together, the novel PLLA/MgF2 coating controls Mg alloy's degradation by spraying different layers of PLLA, resulting in better endothelialization and hemocompatibility, providing a promising candidate for cardiovascular stents.
Collapse
Affiliation(s)
- Wenpeng Peng
- Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Department of Clinical Medicine, Harbin Medical University, Harbin 150000, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yizhe Chen
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Hongde Fan
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui Wang
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Xiang Song
- Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Department of Clinical Medicine, Harbin Medical University, Harbin 150000, China
| |
Collapse
|
5
|
Wang Y, Li G, Yang L, Luo R, Guo G. Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201971. [PMID: 35654586 DOI: 10.1002/adma.202201971] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases have become the leading cause of death worldwide. The increasing burden of cardiovascular diseases has become a major public health problem and how to carry out efficient and reliable treatment of cardiovascular diseases has become an urgent global problem to be solved. Recently, implantable biomaterials and devices, especially minimally invasive interventional ones, such as vascular stents, artificial heart valves, bioprosthetic cardiac occluders, artificial graft cardiac patches, atrial shunts, and injectable hydrogels against heart failure, have become the most effective means in the treatment of cardiovascular diseases. Herein, an overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases is provided, and their future development directions are discussed.
Collapse
Affiliation(s)
- Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
6
|
Gallinoro E, Almendarez M, Alvarez-Velasco R, Barbato E, Avanzas P. Bioresorbable stents: Is the game over? Int J Cardiol 2022; 361:20-28. [DOI: 10.1016/j.ijcard.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
|
7
|
Wang L, Jiao L, Pang S, Yan P, Wang X, Qiu T. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents. MICROMACHINES 2021; 12:mi12080990. [PMID: 34442612 PMCID: PMC8398368 DOI: 10.3390/mi12080990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Coronary artery disease (CAD) is the leading killer of humans worldwide. Bioresorbable polymeric stents have attracted a great deal of interest because they can treat CAD without producing long-term complications. Bioresorbable polymeric stents (BMSs) have undergone a sustainable revolution in terms of material processing, mechanical performance, biodegradability and manufacture techniques. Biodegradable polymers and copolymers have been widely studied as potential material candidates for bioresorbable stents. It is a great challenge to find a reasonable balance between the mechanical properties and degradation behavior of bioresorbable polymeric stents. Surface modification and drug-coating methods are generally used to improve biocompatibility and drug loading performance, which are decisive factors for the safety and efficacy of bioresorbable stents. Traditional stent manufacture techniques include etching, micro-electro discharge machining, electroforming, die-casting and laser cutting. The rapid development of 3D printing has brought continuous innovation and the wide application of biodegradable materials, which provides a novel technique for the additive manufacture of bioresorbable stents. This review aims to describe the problems regarding and the achievements of biodegradable stents from their birth to the present and discuss potential difficulties and challenges in the future.
Collapse
Affiliation(s)
- Liang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Li Jiao
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Shuoshuo Pang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Pei Yan
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Xibin Wang
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Tianyang Qiu
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
- Correspondence:
| |
Collapse
|
8
|
Wu X, Wu S, Kawashima H, Hara H, Ono M, Gao C, Wang R, Lunardi M, Sharif F, Wijns W, Serruys PW, Onuma Y. Current perspectives on bioresorbable scaffolds in coronary intervention and other fields. Expert Rev Med Devices 2021; 18:351-365. [PMID: 33739213 DOI: 10.1080/17434440.2021.1904894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The first-generation bioresorbable scaffolds (BRSs) had a large strut profile to compensate for the insufficient radial strength of bioresorbable polymer materials, resulting in higher scaffold thrombosis rates than conventional drug-eluting stents. To improve the clinical safety and efficacy, the new generation BRSs have been improved by optimal structure design, post-processing of bioresorbable polymer materials, or altering bioresorbable metallic alloys.Areas covered: This review summarizes the lessons learned from the first-generation BRS, updates the clinical outcomes of trials evaluating ABSORB bioresorbable vascular scaffold at long-term and bioresorbable metallic alloy-based devices, and examines recent outcomes of BRS treated in STEMI patients. This review also provides an overview of the current clinical data of seven BRSs manufactured in Asia, and of the BRSs extended application in other clinical arenas.Expert opinion: Drawbacks of the first-generation BRSs need to be addressed by the next generation of these stents with novel materials and technologies. Clinical research, including randomized controlled trials, are required to further evaluate BRSs application in coronary artery disease. The encouraging results of BRSs innovation applied in the peripheral arteries and gastrointestinal tracts support other potential clinical applications of BRS technology.
Collapse
Affiliation(s)
- Xinlei Wu
- Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sijing Wu
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Beijing Anzhen Hospital, Beijing, China
| | - Hideyuki Kawashima
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Hironori Hara
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Masafumi Ono
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Mattia Lunardi
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - William Wijns
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,National Heart & Lung Institute, Imperial College London, London, UK
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
9
|
In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact Mater 2020; 6:1028-1039. [PMID: 33102944 PMCID: PMC7566209 DOI: 10.1016/j.bioactmat.2020.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Detection of in vivo biodegradation is critical for development of next-generation medical devices such as bioresorbable stents or scaffolds (BRSs). In particular, it is urgent to establish a nondestructive approach to examine in vivo degradation of a new-generation coronary stent for interventional treatment based on mammal experiments; otherwise it is not available to semi-quantitatively monitor biodegradation in any clinical trial. Herein, we put forward a semi-quantitative approach to measure degradation of a sirolimus-eluting iron bioresorbable scaffold (IBS) based on optical coherence tomography (OCT) images; this approach was confirmed to be consistent with the present weight-loss measurements, which is, however, a destructive approach. The IBS was fabricated by a metal-polymer composite technique with a polylactide coating on an iron stent. The efficacy as a coronary stent of this new bioresorbable scaffold was compared with that of a permanent metal stent with the name of trade mark Xience, which has been widely used in clinic. The endothelial coverage on IBS was found to be greater than on Xience after implantation in a rabbit model; and our well-designed ultrathin stent exhibited less individual variation. We further examined degradation of the IBSs in both minipig coronary artery and rabbit abdominal aorta models. The present result indicated much faster iron degradation of IBS in the rabbit model than in the porcine model. The semi-quantitative approach to detect biodegradation of IBS and the finding of the species difference might be stimulating for fundamental investigation of biodegradable implants and clinical translation of the next-generation coronary stents. A semi-quantitative OCT method was suggested to evaluate in vivo biodegradation of an iron based coronary stent IBS in a nondestructive manner. The in vivo biodegradation of IBS exhibited dependence on animal species. The endothelial coverage on the biodegradable stent IBS was better than on the commercialized nonbiodegradable stent Xience in rabbits.
Collapse
|
10
|
Kawashima H, Ono M, Kogame N, Takahashi K, Chang CC, Hara H, Gao C, Wang R, Tomaniak M, Modolo R, Wykrzykowska JJ, De Winter RJ, Sharif F, Serruys PW, Onuma Y. Drug-eluting bioresorbable scaffolds in cardiovascular disease, peripheral artery and gastrointestinal fields: a clinical update. Expert Opin Drug Deliv 2020; 17:931-945. [DOI: 10.1080/17425247.2020.1764932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hideyuki Kawashima
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Cardiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masafumi Ono
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Norihiro Kogame
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kuniaki Takahashi
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chun-Chin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hironori Hara
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chao Gao
- Department of Cardiology, Radboudumc, Nijmegen, The Netherlands
| | - Rutao Wang
- Department of Cardiology, Radboudumc, Nijmegen, The Netherlands
| | - Mariusz Tomaniak
- First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Rodrigo Modolo
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Cardiology Division, University of Campinas (UNICAMP), Campinas, Brazil
| | - Joanna J. Wykrzykowska
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Robbert J. De Winter
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Patrick W. Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
- NHLI, Imperial College London, London, UK
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| |
Collapse
|