1
|
Wang Y, Zhang S, Yang L, Yang K, Liu Y, Zhu H, Lai B, Li L, Hua L. Spatiotemporal distribution, interactions and toxic effect of microorganisms and ARGs/MGEs from the bioreaction tank in hospital sewage treatment facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171481. [PMID: 38458442 DOI: 10.1016/j.scitotenv.2024.171481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Antibiotic resistance genes (ARGs) can be emitted from wastewater to ambient air and impose unignorable inhalable hazards, which could be exacerbated in antibiotic-concentrated hospital sewage. However, whether the ARG-carrying pathogens are more likely to infect cells remains largely unknown. Here, this study investigated and analyzed the spatiotemporal distribution, interaction, and toxicity of airborne microorganisms and their hosting ARGs in a hospital sewage treatment facility. The average concentration of ARGs/MGEs in sewage of bioreaction tank (BRT-W) was 2.27 × 104 gene copies/L. In the air of bioreaction tank (BRT-A), the average concentration of ARGs/MGEs was 15.86 gene copies/m3. In the four seasons, the ARGs concentration of sewage gradually decreased over time; The concentration of ARGs in the air first decreased and then increased. In spring, the concentration of ARGs/MGEs (qacedelta1-01) in BRT-W was highest (1.05 × 105 gene copies/L); The concentration of ARGs/MGEs (strB) in BRT-A in winter was higher than other seasons (26.18 gene copies/m3). Different from the past, this study also paid attention to the pathogenic potential of ARGs/MGEs in the air. The results of cell experiments showed that the cytotoxicity of drug-resistant Escherichia coli could reach Grade V. This suggested that the longer the drug-resistant E. coli were exposed to cells, the greater the cytotoxicity. Moreover, the cytotoxicity of bacteria increased with the increase in exposure time. In spring, the toxic effect of ARGs/MGEs in sewage of BRT-W was highest. Traceability analysis proved that BRT-W was an essential source of microorganisms and ARGs/MGEs in BRT-A. Furthermore, the combined risk of people exposed to the air of BRT in spring was higher than that in other seasons.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Lancaster Environment Center, Lancaster University, United Kingdom.
| | - Song Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Liying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Kai Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Haoran Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Bisheng Lai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Linlin Hua
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, PR China.
| |
Collapse
|