1
|
Nemoto Y, Ozawa K, Mori JF, Kanaly RA. Nondesulfurizing benzothiophene biotransformation to hetero and homodimeric ortho-substituted diaryl disulfides by the model PAH-degrading Sphingobium barthaii. Biodegradation 2023; 34:215-233. [PMID: 36808269 DOI: 10.1007/s10532-023-10014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
Understanding the biotransformation mechanisms of toxic sulfur-containing polycyclic aromatic hydrocarbon (PASH) pollutants such as benzothiophene (BT) is useful for predicting their environmental fates. In the natural environment, nondesulfurizing hydrocarbon-degrading bacteria are major active contributors to PASH biodegradation at petroleum-contaminated sites; however, BT biotransformation pathways by this group of bacteria are less explored when compared to desulfurizing organisms. When a model nondesulfurizing polycyclic aromatic hydrocarbon-degrading soil bacterium, Sphingobium barthaii KK22, was investigated for its ability to cometabolically biotransform BT by quantitative and qualitative methods, BT was depleted from culture media but was biotransformed into mostly high molar mass (HMM) hetero and homodimeric ortho-substituted diaryl disulfides (diaryl disulfanes). HMM diaryl disulfides have not been reported as biotransformation products of BT. Chemical structures were proposed for the diaryl disulfides by comprehensive mass spectrometry analyses of the chromatographically separated products and were supported by the identification of transient upstream BT biotransformation products, which included benzenethiols. Thiophenic acid products were also identified, and pathways that described BT biotransformation and novel HMM diaryl disulfide formation were constructed. This work shows that nondesulfurizing hydrocarbon-degrading organisms produce HMM diaryl disulfides from low molar mass polyaromatic sulfur heterocycles, and this may be taken into consideration when predicting the environmental fates of BT pollutants.
Collapse
Affiliation(s)
- Yuki Nemoto
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Kohei Ozawa
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Jiro F Mori
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
2
|
Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine. Microorganisms 2022; 10:microorganisms10030626. [PMID: 35336201 PMCID: PMC8955303 DOI: 10.3390/microorganisms10030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for new and effective antibiotics requires intelligent strategies to obtain a wide range of potential candidates. Laccase-catalyzed reactions have been successfully applied to synthesize new β-lactam antibiotics and other antibiotics. In this work, laccases from three different origins were used to produce new aminoglycoside antibiotics. Kanamycin, tobramycin and gentamicin were coupled with the laccase substrate 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide. The products were isolated, structurally characterized and tested in vitro for antibacterial activity against various strains of Staphylococci, including multidrug-resistant strains. The cytotoxicity of these products was tested using FL cells. The coupling products showed comparable and, in some cases, better antibacterial activity than the parent antibiotics in the agar diffusion assay, and they were not cytotoxic. The products protected mice against infection with Staphylococcus aureus, which was lethal to the control animals. The results underline the great potential of laccases in obtaining new biologically active compounds, in this case new antibiotic candidates from the class of aminoglycosides.
Collapse
|
3
|
Nagar B, Dhar BB. Visible Light-Mediated Thiolation of Substituted 1,4-Naphthoquinones Using Eosin Y as a Photoredox Catalyst. J Org Chem 2022; 87:3195-3201. [PMID: 35148104 DOI: 10.1021/acs.joc.1c02924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of eosin Y, a visible light-induced one-step procedure (isolated yield of ≥75%) for thiolation of substituted 1,4-naphthoquinones using various aromatic and aliphatic thiols at room temperature is described herein. The rate-determining step of the reaction is thiyl radical generation, and the radical was characterized by high-resolution mass spectrometry. Cost effectiveness, operational simplicity, a short reaction time, high atom economy, and a very good yield make this photoredox-mediated process a useful alternative to the transition metal (e.g., Cu, Ag, and Pd)-catalyzed coupling reaction of quinones with thiols or disulfides.
Collapse
Affiliation(s)
- Bhawana Nagar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Gautam Buddha Nagar, UP 201314, India
| | - Basab Bijayi Dhar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Gautam Buddha Nagar, UP 201314, India
| |
Collapse
|
4
|
Sharma V, Pugazhenthi G, Vasanth D. Production and characterization of a novel thermostable laccase from Bacillus licheniformis VNQ and its application in synthesis of bioactive 1,4-naphthoquinones. J Biosci Bioeng 2021; 133:8-16. [PMID: 34629297 DOI: 10.1016/j.jbiosc.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Bacterial laccases have proven to be a potential biocatalyst for various industrial applications due to their remarkable catalytic and stability properties. In this study, a novel thermostable laccase was produced from the bacterium Bacillus licheniformis VNQ by submerged fermentation. The specific activity of crude and purified laccase was found to be 13.17 U mg-1 and 83.47 U mg-1, respectively. The enzyme possessed a molecular mass of ∼48 kDa when characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and pH for enzyme activity was determined to be 55°C and 5.0, respectively. The enzyme was considered to be thermo-tolerant as it possessed a half-life of 4 h at 70°C. The enzyme was utilized for the oxidative biotransformation of in situ synthesized p-quinones to biologically active compounds, 1,4-naphthoquinone and its derivative. The obtained products were characterized using nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) analysis. A high yield of naphthoquinones (74.93 ± 1.2%) with 1,4-naphthoquinone (60.61 ± 1.0%), and its derivative 2-hydroxy-1,4-naphthoquinone (14.32 ± 0.2%) was obtained at the optimized reaction conditions.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - Gopal Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dhakshinamoorthy Vasanth
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
5
|
Laccase-catalyzed derivatization of 6-aminopenicillanic, 7-aminocephalosporanic and 7-aminodesacetoxycephalosporanic acid. AMB Express 2020; 10:177. [PMID: 33006678 PMCID: PMC7532246 DOI: 10.1186/s13568-020-01117-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023] Open
Abstract
Trametes spec. laccase (EC 1.10.3.2.) mediates the oxidative coupling of 6-aminopenicillanic, 7-aminocephalosporanic, and 7-aminodesacetoxycephalosporanic acid with 2,5-dihydroxybenzoic acid derivatives to form new penicillin and cephalosporin structures, respectively. The heteromolecular hybrid dimers are formed by nuclear amination of the p-hydroquinones with the primary amines and inhibited in vitro the growth of Staphylococcus species, including some multidrug-resistant strains.
Collapse
|
6
|
Adarsh Krishna TP, Pandaram S, Chinnasamy S, Ilangovan A. Oxidative radical coupling of hydroquinones and thiols using chromic acid: one-pot synthesis of quinonyl alkyl/aryl thioethers. RSC Adv 2020; 10:19454-19462. [PMID: 35515459 PMCID: PMC9054077 DOI: 10.1039/d0ra01519a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
An efficient, simple and practical protocol for one-pot sequential oxidative radical C-H/S-H cross-coupling of thiols with hydroquinones (HQs) and oxidation leading to the formation of quinonyl alkyl/aryl thioethers using H2CrO4 was developed. This cross-coupling of thiyl and aryl radicals offers mono thioethers in good to moderate yield and works well with a wide variety of thiols. Similarly, this method works well for coupling of 2-amino thiophenol and HQs to form phenothiazine-3-ones 5a-c. C-S bond formation via thioether synthesis was observed using a chromium reagent for the first time. Theoretical studies on the pharmacokinetic properties of compounds 5a-c revealed that due to drug-like properties, compound 5b strongly binds with Alzheimer's disease (AD) associated AChE target sites.
Collapse
Affiliation(s)
- T P Adarsh Krishna
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| | - Sakthivel Pandaram
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| | - Suresh Chinnasamy
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| | - Andivelu Ilangovan
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| |
Collapse
|
7
|
Wellington KW, Hlatshwayo V, Kolesnikova NI, Saha ST, Kaur M, Motadi LR. Anticancer activities of vitamin K3 analogues. Invest New Drugs 2019; 38:378-391. [PMID: 31701430 DOI: 10.1007/s10637-019-00855-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
In a previous study we reported on the synthesis of 1,4-naphthoquinone-sulfides by thiolation of 1,4-naphthohydroquinones with primary aryl and alkyl thiols using laccase as catalyst. These compounds were synthesized as Vitamin K3 analogues. Vitamin K3 (VK3; 2-methyl-1,4-naphthoquinone; menadione) is known to have potent anticancer activity. This investigation reports on the anticancer activity of these VK3 analogues against TK10 renal, UACC62 melanoma, MCF7 breast, HeLa cervical, PC3 prostate and HepG2 liver cancer cell lines to evaluate their cytostatic effects. A 1,4-naphthohydroquinone derivative exhibited potent cytostatic effects (GI50 = 1.66-6.75 μM) which were better than that of etoposide and parthenolide against several of the cancer cell lines. This compound produces reactive oxygen species and disrupts the mitochondrial membrane potential in the MCF7 breast cancer cell line which is an indication that the cells undergo apoptosis. The 1,4-naphthoquinone sulfides also had potent cytostatic effects (GI50 = 2.82-9.79 μM) which were also better than that of etoposide, parthenolide and VK3 against several of the cancer cell lines. These compounds are generally more selective for cancer cells than for normal human lung fetal fibroblasts (WI-38). They also have moderate to weak cytostatic effects compared to etoposide, parthenolide and VK3 which have potent cytostatic effects against WI-38. One analogue induces apoptosis by activating caspases without arresting the cell cycle in the MCF7 breast cancer cell line. These results inspire further research for possible application in cancer chemotherapy.
Collapse
Affiliation(s)
| | - Vincent Hlatshwayo
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for HIV and STI's, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | | | - Sourav Taru Saha
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| |
Collapse
|
8
|
Okazawa A, Yamanishi K, Katsuyama N, Kitazawa S, Ogawa T, Ohta D. Identification of novel cytochrome P450 monooxygenases from actinomycetes capable of intermolecular oxidative C-C coupling reactions. J Biosci Bioeng 2019; 129:23-30. [PMID: 31506243 DOI: 10.1016/j.jbiosc.2019.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
The cross-coupling reaction is one of the most important chemical reactions in the modern organic chemistry. Biocatalysts capable of catalyzing C-C coupling reactions are desired in the chemical industry for sustainable development. Cytochrome P450 monooxygenases (P450s) have received considerable attention as biocatalysts capable of catalyzing such reactions. Here, we focused on actinomycete P450s, which have high homology with CYP158A2, involved in the oxidative C-C coupling reaction for flaviolin dimerization in Streptomyces coelicolor A3(2). The screening of a chemical library composed of 426 aromatic compounds identified several combinations of P450s and their potential substrates. The type-I difference spectrum indicated that the identified substrates bind to the active sites of a P450, named StVI from Streptomyces violaceusniger. A redshift of the absorption maximum of the reaction products, together with LC-MS analysis suggested the presence of extended conjugate systems in the products through direct C-C coupling between two aromatic rings. The results demonstrated that actinomycete P450s have great potential to be utilized as biocatalysts for oxidative C-C coupling reactions and to facilitate the synthesis of diverse coupling products.
Collapse
Affiliation(s)
- Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenta Yamanishi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Nao Katsuyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shohei Kitazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
9
|
Wellington KW, Nyoka NBP, McGaw LJ. Investigation of the antibacterial and antifungal activity of thiolated naphthoquinones. Drug Dev Res 2019; 80:386-394. [PMID: 30609114 DOI: 10.1002/ddr.21512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/06/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022]
Abstract
The WHO has stated that antibiotic resistance is escalating to perilously high levels globally and that traditional therapies of antimicrobial drugs are futile against infections caused by resistant microorganisms. Novel antimicrobial drugs are therefore required. We report in this study on the inhibitory activity of the 1,4-naphthoquinone-2,3-bis-sulfides and 1,4-naphthoquinone sulfides against two bacteria and a fungus to determine their antimicrobial properties. The 1,4-naphthoquinone sulfides have potent activity with a minimum inhibitory concentration (MIC) of 7.8 μg/mL against Staphylococcus aureus (Gram +ve), an MIC of 23.4 μg/mL against the fungus, Candida albicans, which was better than that of Amphotericin B (MIC = 31.3 μg/mL), and against Escherichia coli (Gram -ve) an MIC of 31.3 μg/mL was obtained. The 1,4-naphthoquinone had an MIC of 11.7 μg/mL against S. aureus and the 1,4-naphthohydroquinone also had the same activity against E. coli. Hit, Lead & Candidate Discovery.
Collapse
Affiliation(s)
| | - Nomgqibelo B P Nyoka
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
10
|
Wellington KW, Govindjee VP, Steenkamp P. A laccase-catalysed synthesis of triaminated cyclohexa-2,4-dienones from catechol. J Catal 2018. [DOI: 10.1016/j.jcat.2018.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abdel-Mohsen HT, Conrad J, Harms K, Nohr D, Beifuss U. Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Adv 2017. [DOI: 10.1039/c6ra28102h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Laccase-catalyzed green reaction between catechols and 2-thioxopyrimidin-4-ones delivers novel pyrimidobenzothiazoles and catechol thioethers with antiproliferative activities against HepG2 cell line.
Collapse
Affiliation(s)
- H. T. Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department
- Pharmaceutical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| | - J. Conrad
- Bioorganische Chemie
- Institut für Chemie
- Universität Hohenheim
- Stuttgart
- Germany
| | - K. Harms
- Fachbereich Chemie
- Universität Marburg
- D-35032 Marburg
- Germany
| | - D. Nohr
- Institut für Biologische Chemie und Ernährungswissenschaft
- Universität Hohenheim
- Stuttgart
- Germany
| | - U. Beifuss
- Bioorganische Chemie
- Institut für Chemie
- Universität Hohenheim
- Stuttgart
- Germany
| |
Collapse
|
12
|
Qwebani-Ogunleye T, Kolesnikova NI, Steenkamp P, de Koning CB, Brady D, Wellington KW. A one-pot laccase-catalysed synthesis of coumestan derivatives and their anticancer activity. Bioorg Med Chem 2016; 25:1172-1182. [PMID: 28041801 DOI: 10.1016/j.bmc.2016.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022]
Abstract
Suberase®, a commercial laccase from Novozymes, was used to catalyse the synthesis of coumestans. The yields, in some cases, were similar to or better than that obtained by other enzymatic, chemical or electrochemical syntheses. The compounds were screened against renal TK10, melanoma UACC62 and breast MCF7 cancer cell-lines and the GI50, TGI and LC50 values determined. Anticancer screening showed that the cytostatic effects of the coumestans were most effective against the melanoma UACC62 and breast MCF7 cancer cell-lines exhibiting potent activities, GI50=5.35 and 7.96μM respectively. Moderate activity was obtained against the renal TK10 cancer cell-line. The total growth inhibition, based on the TGI values, of several of the compounds was better than that of etoposide against the melanoma UACC62 and the breast MCF7 cancer cell lines. Several compounds, based on the LC50 values, were also more lethal than etoposide against the same cancer cell lines. The SAR for the coumestans is similar against the melanoma UACC62 and breast MCF7 cell lines. The compound having potent activity against both breast MCF7 and melanoma UACC62 cell lines has a methyl group on the benzene ring (ring A) as well as on the catechol ring (ring B). Anticancer activity decreases when methoxy and halogen substituents are inserted on rings A and B.
Collapse
Affiliation(s)
| | | | - Paul Steenkamp
- CSIR Biosciences, PO Box 395, Pretoria, South Africa; Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Charles B de Koning
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Box, Wits 2050, South Africa
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Box, Wits 2050, South Africa
| | | |
Collapse
|
13
|
Ecofriendly syntheses of phenothiazones and related structures facilitated by laccase – a comparative study. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Laccase-mediated multi-step homo- and heteromolecular reactions of ortho -dihydroxylated aromatic compounds and mono- or diaminated substances resulting in C C, C O and C N bonds. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Cannatelli MD, Ragauskas AJ. Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zhu J, Chen Y, Lin F, Wang B, Chen Z, Liu L. NiSO4-catalyzed C–H activation/C–S cross-coupling of 1,2,3-triazole N-oxides with thiols. Org Biomol Chem 2015; 13:3711-20. [DOI: 10.1039/c4ob02586e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient nickel-catalyzed protocol for C–S cross-coupling through the direct functionalization of 2-aryl-1,2,3-triazole N-oxide C–H bonds with aryl or alkyl thiols, or diphenyl disulfide has been developed.
Collapse
Affiliation(s)
- Jiayi Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Yu Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Feng Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Baoshuang Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Liangxian Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| |
Collapse
|