1
|
Ding X, Mu Y, Zhu Y, Guo X, Liu K, Sun L, Liu Z. Mechanistic insight into the carboxylic derivatives formation from CO2 and ethylene over iron(0)-based catalyst. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Tan SZ, Chen P, Zhu L, Gan MQ, Ouyang Q, Du W, Chen YC. Use of ( E, E)-Dienoic Acids as Switchable ( E, E)- and ( Z, E)-Dienyl Anion Surrogates via Ligand-Controlled Palladium Catalysis. J Am Chem Soc 2022; 144:22689-22697. [PMID: 36468863 DOI: 10.1021/jacs.2c10004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carboxylic acids are not readily applied as carbon-based nucleophiles due to their intrinsic acidic group. Here, we demonstrate that free (E,E)-2,4-dienoic acids form electron-neutral and highest occupied molecular orbital-raised η2-complexes with Pd(0) and undergo Friedel-Crafts-type additions to imines with exclusive α-regioselectivity, giving formal dienylated products after decarboxylation. Unusual and switchable (E,E)- and (Z,E)-selectivity, along with excellent enantioselectivity, is achieved via ligand-controlled outer-sphere or inner-sphere reaction modes, respectively, which are well supported by comprehensive density functional theory calculation studies. An unprecedented formal reductive Mannich reaction between (E,E)-dienoic acids and imines is also developed to furnish enantioenriched β-amino acid derivatives.
Collapse
Affiliation(s)
- Shun-Zhong Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Peng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Meng-Qi Gan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China.,College of Pharmacy, Third Military Medical University, Chongqing400038, China
| |
Collapse
|
3
|
Ayyappan R, Abdalghani I, Da Costa RC, Owen GR. Recent developments on the transformation of CO 2 utilising ligand cooperation and related strategies. Dalton Trans 2022; 51:11582-11611. [PMID: 35839074 DOI: 10.1039/d2dt01609e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portfolio of value-added chemicals, fuels and building block compounds can be envisioned from CO2 on an industrial scale. The high kinetic and thermodynamic stabilities of CO2, however, present a significant barrier to its utilisation as a C1 source. In this context, metal-ligand cooperation methodologies have emerged as one of the most dominant strategies for the transformation of the CO2 molecule over the last decade or so. This review focuses on the advancements in CO2 transformation using these cooperative methodologies. Different and well-studied ligand cooperation methodologies, such as dearomatisation-aromatisation type cooperation, bimetallic cooperation (M⋯M'; M' = main group or transition metal) and other related strategies are also discussed. Furthermore, the cooperative bond activations are subdivided based on the number of atoms connecting the reactive centre in the ligand framework (spacer/linker length) and the transition metal. Several similarities across these seemingly distinct cooperative methodologies are emphasised. Finally, this review brings out the challenges ahead in developing catalytic systems from these CO2 transformations.
Collapse
Affiliation(s)
- Ramaraj Ayyappan
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | - Issam Abdalghani
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | | | - Gareth R Owen
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| |
Collapse
|
4
|
Zhu Y, Ding X, Sun L, Liu Z. Advances in the Production of Acrylic Acid and Its Derivatives by CO 2/C 2H 4 Coupling. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Zhu Y, Guo X, Ding X, Sun L, Zhang M, Liu Z. Understanding the acrylates formation from CO2 and ethylene over Ni- and Pd-based catalysts: A DFT study on the effects of solvents, methyl halides, and ligands. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Challenges and recent advancements in the transformation of CO 2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chem Soc Rev 2022; 51:9371-9423. [DOI: 10.1039/d1cs00921d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of carbon dioxide (CO2) into valuable organic carboxylic acids is essential for maintaining sustainability. In this review, such CO2 thermo-, photo- and electrochemical transformations under 3d-transition metal catalysis are described from 2017 until 2022.
Collapse
Affiliation(s)
- Robin Cauwenbergh
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Vishakha Goyal
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Maiti
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502 285, Telangana, India
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
7
|
Dibenedetto A, Nocito F. The Future of Carbon Dioxide Chemistry. CHEMSUSCHEM 2020; 13:6219-6228. [PMID: 32935474 DOI: 10.1002/cssc.202002029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The utilization of carbon dioxide as building block for chemicals or source of carbon for energy products has been explored for over 40 years now, with varying allure. In correspondence with oil-crises, the use of CO2 has come into the spotlight, soon set aside when the crisis was over due to the low price of fossil carbon and the convenience of using established technologies. Nowadays, there is a continuous shift from fossil-C-based to perennial (solar, wind, geothermal, hydro-power) energy-driven processes that will also have a great potential to convert large amounts of carbon dioxide. The integration of biotechnology and catalysis will be a key player towards the utilization of CO2 in several different applications, reducing both the extraction of fossil carbon and the carbon transfer to the atmosphere.
Collapse
Affiliation(s)
- Angela Dibenedetto
- CIRCC and Department of Chemistry, University of Bari, Campus Universitario, 70126, Bari, Italy
- IC2R srl, Tecnopolis, Valenzano (BA), 70010>, Italy
| | - Francesco Nocito
- CIRCC and Department of Chemistry, University of Bari, Campus Universitario, 70126, Bari, Italy
| |
Collapse
|
8
|
Pyridine-Chelated Imidazo[1,5-a]Pyridine N-Heterocyclic Carbene Nickel(II) Complexes for Acrylate Synthesis from Ethylene and CO2. Catalysts 2020. [DOI: 10.3390/catal10070758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nickel(II) dichloride complexes with a pyridine-chelated imidazo[1,5-a]pyridin-3-ylidene py-ImPy ligand were developed as novel catalyst precursors for acrylate synthesis reaction from ethylene and carbon dioxide (CO2), a highly promising sustainable process in terms of carbon capture and utilization (CCU). Two types of ImPy salts were prepared as new C,N-bidentate ligand precursors; py-ImPy salts (3, 4a–4e) having a pyridine group at C(5) on ImPy and a N-picolyl-ImPy salt (10) having a picolyl group at N atom on ImPy. Nickel(II) complexes such as py-ImPyNi(II)Cl2 (7, 8a–8e) and N-picolyl-ImPyNi(II)Cl2 (12) were synthesized via transmetalation protocol from silver(I) complexes, py-ImPyAgCl (5, 6a–6e) and N-picolyl-ImPyAgCl (11). X-ray diffraction analysis of nickel(II) complexes (7, 8b, 12) showed a monomeric distorted tetrahedral geometry and a six-membered chelate ring structure. py-ImPy ligands formed a more planar six-membered chelate with the nickel center than did N-picolyl-ImPy ligand. py-ImPyNi(II)Cl2 complexes (8a–8e) with tert-butyl substituents exhibited noticeable catalytic activity in acrylate synthesis from ethylene and CO2 (up to 108% acrylate). Interestingly, the use of additional additives including monodentate phosphines increased catalytic activity up to 845% acrylate (TON 8).
Collapse
|
9
|
Takahashi K, Hirataka Y, Ito T, Iwasawa N. Mechanistic Investigations of the Ruthenium-Catalyzed Synthesis of Acrylate Salt from Ethylene and CO 2. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohei Takahashi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yo Hirataka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tatsuyoshi Ito
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
10
|
Takahashi K, Cho K, Iwai A, Ito T, Iwasawa N. Development of N-Phosphinomethyl-Substituted NHC-Nickel(0) Complexes as Robust Catalysts for Acrylate Salt Synthesis from Ethylene and CO 2. Chemistry 2019; 25:13504-13508. [PMID: 31464036 DOI: 10.1002/chem.201903625] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 11/11/2022]
Abstract
By using a nickel complex with an N-phosphinomethyl-N-heterocyclic carbene ligand (NHC-P), the reducing ability and thermal stability of the complex were improved considerably compared to the previously reported bipyridine and bisphosphine complexes, and acrylate salt was prepared from ethylene and CO2 with the highest TON ever reported for nickel systems even without using metallic zinc. Oxidative cyclization of ethylene and CO2 on the NHC-P nickel complex was found to proceed very rapidly compared to previous systems.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kinryo Cho
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Asaki Iwai
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tatsuyoshi Ito
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
11
|
|
12
|
Li Y, Liu Z, Zhang J, Cheng R, Liu B. Insights into the Base-Assisted Acrylate Formation from CO2
/C2
H4
Coupling by Pd- and Ni-catalyst: A DFT Mechanistic Study. ChemCatChem 2018. [DOI: 10.1002/cctc.201801305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuanhui Li
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhen Liu
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Jialong Zhang
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ruihua Cheng
- State Key Laboratory of Chemical Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Boping Liu
- College of Materials and Energy; South China Agricultural University; Guangzhou 510642 P. R. China
| |
Collapse
|
13
|
Liu L, Liu Z, Cheng R, He X, Liu B. Unraveling the Effects of H2, N Substituents and Secondary Ligands on Cr/PNP-Catalyzed Ethylene Selective Oligomerization. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Ruihua Cheng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xuelian He
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Boping Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People’s Republic of China
| |
Collapse
|
14
|
Aresta M, Nocito F, Dibenedetto A. What Catalysis Can Do for Boosting CO2 Utilization. ADVANCES IN CATALYSIS 2018. [DOI: 10.1016/bs.acat.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|