1
|
Li S, Mo QL, Xiao Y, Xiao FX. Maneuvering cuprous oxide-based photocathodes for solar-to-fuel conversion. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Das K, Bariki R, Pradhan SK, Majhi D, Dash P, Mishra A, Dhiman R, Nayak B, Mishra BG. Boosting the photocatalytic performance of Bi 2Fe 4O 9 through formation of Z-scheme heterostructure with In 2S 3: Applications towards water decontamination. CHEMOSPHERE 2022; 306:135600. [PMID: 35809748 DOI: 10.1016/j.chemosphere.2022.135600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/18/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Design of biocompatible nano-heterostructure photocatalyst with broad UV-visible spectrum response and strong redox ability is a promising approach with potential application in micropollutant degradation and pathogen deactivation from aqueous sources. Herein, we have reported the facile fabrication of In2S3/Bi2Fe4O9 (ISxBFO) binary heterostructure by hydrothermally depositing In2S3 nanoparticles (20-40 nm) over Bi2Fe4O9 nanocuboids/nanoplates prepared by combustion synthesis route. In depth characterization study revealed broad spectrum UV-Vis absorption, large interfacial contact, improved charge carrier separation and mobility and a longer excited state life time (4.7 ns) for the ISxBFO heterostructure materials. The integration of In2S3 with Bi2Fe4O9 strongly boosts the optoelectrical and photocatalytic property of pristine Bi2Fe4O9. The ISxBFO heterostructure material exhibited enhanced photocatalytic efficiency for aqueous phase degradation of sulfamethoxazole antibiotics (kapp = 0.06 min-1) and phenyl urea herbicides (kapp = 0.028 min-1) with reaction rates 3-8 times higher than the pure BFO component. The MTT assay experiments confirmed non-cytotoxic nature of treated sulfamethoxazole and diuron solutions. The composite materials also displayed convincing antibacterial behavior towards toxigenic Vibrio cholerae pathogen. Haemagglutination assay study revealed excellent biocompatibility of the binary composite up to 200 mg L-1. Radical trapping study suggested expeditious generation of •OH and •O2- radicals over the ISxBFO surface which is nearly 3.8 and 2.3 times higher than pure BFO and In2S3 respectively. The occurrence of a direct Z-scheme mechanism is inferred from radical trapping and XPS study which accounted for the improved photocatalytic activity and strong radical generation property of the ISxBFO heterostructure material.
Collapse
Affiliation(s)
- Krishnendu Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ranjit Bariki
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sibun Kumar Pradhan
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Dibyananda Majhi
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Priyanka Dash
- Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Abtar Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Rohan Dhiman
- Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Bismita Nayak
- Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - B G Mishra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
3
|
Lee DJ, Mohan Kumar G, Ganesh V, Jeon HC, Kim DY, Kang TW, Ilanchezhiyan P. Novel Nanoarchitectured Cu 2Te as a Photocathodes for Photoelectrochemical Water Splitting Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3192. [PMID: 36144977 PMCID: PMC9506189 DOI: 10.3390/nano12183192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Designing photocathodes with nanostructures has been considered a promising way to improve the photoelectrochemical (PEC) water splitting activity. Cu2Te is one of the promising semiconducting materials for photoelectrochemical water splitting, the performance of Cu2Te photocathodes remains poor. In this work, we report the preparation of Cu2Te nanorods (NRs) and vertical nanosheets (NSs) assembled film on Cu foil through a vapor phase epitaxy (VPE) technique. The obtained nano architectures as photocathodes toward photoelectrochemical (PEC) performance was tested afterwards for the first time. Optimized Cu2Te NRs and NSs photocathodes showed significant photocurrent density up to 0.53 mA cm-2 and excellent stability under illumination. Electrochemical impedance spectroscopy and Mott-Schottky analysis were used to analyze in more detail the performance of Cu2Te NRs and NSs photocathodes. From these analyses, we propose that Cu2Te NRs and NSs photocathodes are potential candidate materials for use in solar water splitting.
Collapse
Affiliation(s)
- Dong Jin Lee
- Quantum-Functional Semiconductor Research Center (QSRC), Institute of Future Technology, Dongguk University, Seoul 04623, Korea
| | - G. Mohan Kumar
- Quantum-Functional Semiconductor Research Center (QSRC), Institute of Future Technology, Dongguk University, Seoul 04623, Korea
| | - V. Ganesh
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Hee Chang Jeon
- Quantum-Functional Semiconductor Research Center (QSRC), Institute of Future Technology, Dongguk University, Seoul 04623, Korea
| | - Deuk Young Kim
- Quantum-Functional Semiconductor Research Center (QSRC), Institute of Future Technology, Dongguk University, Seoul 04623, Korea
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04623, Korea
| | - Tae Won Kang
- Quantum-Functional Semiconductor Research Center (QSRC), Institute of Future Technology, Dongguk University, Seoul 04623, Korea
| | - P. Ilanchezhiyan
- Quantum-Functional Semiconductor Research Center (QSRC), Institute of Future Technology, Dongguk University, Seoul 04623, Korea
| |
Collapse
|
4
|
Quiñonero J, Pastor FJ, Orts JM, Gómez R. Photoelectrochemical Behavior and Computational Insights for Pristine and Doped NdFeO 3 Thin-Film Photocathodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14150-14159. [PMID: 33728897 PMCID: PMC8485327 DOI: 10.1021/acsami.0c21792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Among the different strategies that are being developed to solve the current energy challenge, harvesting energy directly from sunlight through a tandem photoelectrochemical cell (water splitting) is most attractive. Its implementation requires the development of stable and efficient photocathodes, NdFeO3 being a suitable candidate among ternary oxides. In this study, transparent NdFeO3 thin-film photocathodes have been successfully prepared by a citric acid-based sol-gel procedure, followed by thermal treatment in air at 640 °C. These electrodes show photocurrents for both the hydrogen evolution and oxygen reduction reactions. Doping with Mg2+ and Zn2+ has been observed to significantly enhance the photoelectrocatalytic performance of NdFeO3 toward oxygen reduction. Magnesium is slightly more efficient as a dopant than Zn, leading to a multiplication of the photocurrent by a factor of 4-5 for a doping level of 5 at % (with respect to iron atoms). This same trend is observed for hydrogen evolution. The beneficial effect of doping is primarily attributed to an increase in the density and a change in the nature of the majority charge carriers. DFT calculations help to rationalize the behavior of NdFeO3 by pointing to the importance of nanostructuring and doping. All in all, NdFeO3 has the potential to be used as a photocathode in photoelectrochemical applications, although efforts should be directed to limit surface recombination.
Collapse
Affiliation(s)
- Javier Quiñonero
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Francisco J. Pastor
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - José M. Orts
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Roberto Gómez
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| |
Collapse
|
5
|
Yuan Y, Sun LM, Gao H, Mo S, Xu T, Yang L, Zhan WW. Engineering a Highly Improved Porous Photocatalyst Based on Cu 2O by a Synergistic Effect of Cation Doping of Zn and Carbon Layer Coating. Inorg Chem 2020; 59:16010-16015. [PMID: 33040527 DOI: 10.1021/acs.inorgchem.0c02547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zn-doped cuprous oxide (Cu2O) nanoparticles coated by carbon layers (Zn/Cu2O@C) have been obtained via a bimetallic MOF (Zn/Cu-MOF-199) as the sacrificial precursor. Originated from the octahedral morphology of Zn/Cu-MOF-199, the as-synthesized Zn/Cu2O@C shows a porous octahedron structure. The obtained Zn/Cu2O@C can afford the following merits. (1) The cation doping of Zn inside Cu2O can enhance the light absorption by introducing impurity energy levels and facilitate the separation of photoinduced electrons and holes. (2) The coating of a carbon layer in Zn/Cu2O@C can also efficiently enhance the separation efficiency of photoinduced charge carriers. (3) The porous structure of Zn/Cu2O@C can provide increased active sites. Therefore, these merits lead to the highly improved photocatalytic activities toward various chemical reactions. In addition, the fully coated carbon layer can facilitate the cycle stability of Zn/Cu2O@C in the photocatalytic processes.
Collapse
Affiliation(s)
- Yusheng Yuan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Li-Ming Sun
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hao Gao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Sha Mo
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tianyi Xu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Lei Yang
- Shenzhen HUASUAN Technology Co., Ltd., 4168 Liuxian Avenue, Nanshan District, Shenzhen 518055, P. R. China
| | - Wen-Wen Zhan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
6
|
Aktar A, Ahmmed S, Hossain J, Ismail ABM. Solution-Processed Synthesis of Copper Oxide (Cu x O) Thin Films for Efficient Photocatalytic Solar Water Splitting. ACS OMEGA 2020; 5:25125-25134. [PMID: 33043191 PMCID: PMC7542592 DOI: 10.1021/acsomega.0c02754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
This article reports a solution-processed synthesis of copper oxide (Cu x O) to be used as a potential photocathode for solar hydrogen production in the solar water-splitting system. Cu x O thin films were synthesized through the reduction of copper iodide (CuI) thin films by sodium hydroxide (NaOH), which were deposited by the spin coating method from CuI solution in a polar aprotic solvent (acetonitrile). The phase and crystalline quality of the synthesized Cu x O thin films prepared at various annealing temperatures were investigated using various techniques. The X-ray diffraction and energy dispersive X-ray spectroscopy studies confirm the presence of Cu2O, CuO/Cu2O mixed phase, and pure CuO phase at annealing temperatures of 250, 300, and 350 °C, respectively. It is revealed from the experimental findings that the synthesized Cu x O thin films with an annealing temperature of 350 °C possess the highest crystallinity, smooth surface morphology, and higher carrier density. The highest photocurrent density of -19.12 mA/cm2 at -1 V versus RHE was achieved in the photoelectrochemical solar hydrogen production system with the use of the Cu x O photocathode annealed at a temperature of 350 °C. Therefore, it can be concluded that Cu x O synthesized by the spin coating method through the acetonitrile solvent route can be used as an efficient photocathode in the solar water-splitting system.
Collapse
Affiliation(s)
- Asma Aktar
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shamim Ahmmed
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Jaker Hossain
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Abu Bakar Md. Ismail
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
7
|
Electrodeposited Cu thin layers as low cost and effective underlayers for Cu2O photocathodes in photoelectrochemical water electrolysis. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04441-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|