1
|
Zeng Y, Lemay JC, Dong Y, Garcia J, Groves MN, McBreen PH. Ligand-Assisted Carbonyl Bond Activation in Single Diastereomeric Complexes on Platinum. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zeng
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jean-Christian Lemay
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Yi Dong
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - James Garcia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Michael. N Groves
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Peter H. McBreen
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
2
|
Patil RD, Dutta M, Pratihar S. Hydrogenation Involving Two Different Proton- and Hydride-Transferring Reagents through Metal–Ligand Cooperation: Mechanism and Scope. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Manali Dutta
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
3
|
Wu D, Han D, Zhou W, Streiff S, Khodakov AY, Ordomsky VV. Surface modification of metallic catalysts for the design of selective processes. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2079809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dan Wu
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
| | - Stephane Streiff
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
| | - Andrei Y. Khodakov
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
| | - Vitaly V. Ordomsky
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
| |
Collapse
|
4
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Organic compound modification of CeO2 and 2-cyanopyridine hybrid catalyst in carbonate synthesis from CO2 and alcohols. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
|
7
|
Boosting the Performance of Nano-Ni Catalysts by Palladium Doping in Flow Hydrogenation of Sulcatone. Catalysts 2020. [DOI: 10.3390/catal10111267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of Pd doping on nano-Ni catalyst hydrogenation aptitude in sulcatone (6-methyl-5-hepten-2-one) hydrogenation was investigated. Obtained results demonstrated that the addition of non-catalytic amounts of Pd to the surface of parent Ni catalyst improves the activity to the extent that it surpassed the activity of 2.16 wt% Pd catalyst (model catalyst) at optimal reaction conditions in the flow hydrogenation of an unsaturated ketone. Pd doping improves hydrogen activation on the catalyst, which was found to be a rate-limiting step using kinetic isotopic measurements and theoretical calculations.
Collapse
|
8
|
Zienkiewicz‐Machnik M, Goszewska I, Giziński D, Śrębowata A, Kuzmowicz K, Kubas A, Matus K, Lisovytskiy D, Pisarek M, Sá J. Tuning Nano‐Nickel Catalyst Hydrogenation Aptitude by On‐the‐Fly Zirconium Doping. ChemCatChem 2020. [DOI: 10.1002/cctc.202000235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ilona Goszewska
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Damian Giziński
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Anna Śrębowata
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Katarzyna Kuzmowicz
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Adam Kubas
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Krzysztof Matus
- Institute of Engineering Materials and BiomaterialsSilesian University of Technology Konarskiego 18 A 44-100 Gliwice Poland
| | - Dmytro Lisovytskiy
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marcin Pisarek
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Jacinto Sá
- Institute of Physical ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Department of Chemistry Ångström LaboratoryUppsala University Box 532 751 20 Uppsala Sweden
| |
Collapse
|
9
|
Kaźmierczak K, Ramamoorthy RK, Moisset A, Viau G, Viola A, Giraud M, Peron J, Sicard L, Piquemal JY, Besson M, Perret N, Michel C. Importance of the decoration in shaped cobalt nanoparticles in the acceptor-less secondary alcohol dehydrogenation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00390e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ligands matter for shaped decorated Co nanoparticles, at the frontier between homogeneous and heterogeneous catalysis.
Collapse
|
10
|
Smith NE, Bernskoetter WH, Hazari N. The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal-Ligand Cooperation. J Am Chem Soc 2019; 141:17350-17360. [PMID: 31617710 DOI: 10.1021/jacs.9b09062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reversible activation of H2 via a pathway involving metal-ligand cooperation (MLC) is proposed to be important in many transition metal catalyzed hydrogenation and dehydrogenation reactions. Nevertheless, there is a paucity of experimental information probing the mechanism of this transformation. Here, we present an in-depth kinetic study of the 1,2-addition of H2 via an MLC pathway to the widely used iron catalyst [(iPrPNP)FeH(CO)] (1) (iPrPNP = N(CH2CH2PiPr2)2-). We report one of the first experimental demonstrations of an enhancement in rate for the activation of H2 using protic additives, which operate as "proton shuttles". Our results indicate that proton shuttles need to be able to both simultaneously donate and accept a proton, and the best shuttles are molecules that are strong hydrogen bond donors but sufficiently weak acids to avoid deleterious protonation of the transition metal complex. Additionally, comparison of the rate of H2 activation via an MLC pathway between 1 and two widely used ruthenium catalysts enables more general conclusions about the role of the metal, ancillary ligand, and proton shuttles in H2 activation. The results of this study provide guidance about the design of catalysts and additives to promote H2 activation via an MLC pathway.
Collapse
Affiliation(s)
- Nicholas E Smith
- The Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Wesley H Bernskoetter
- The Department of Chemistry , The University of Missouri , Columbia , Missouri 65211 , United States
| | - Nilay Hazari
- The Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| |
Collapse
|